Geometry.c - rewrote my python box-packer algo in C,

packing 2400 rectanges is about 38x faster.

Use the C implimentation in uvcalc_lightmap and uvcalc_smart_project

Blender.c - filename returning None raises errors with existing scripts, just return "" so string functions on the filename dont raise an error.
This commit is contained in:
Campbell Barton 2007-03-20 07:23:09 +00:00
parent 1ebc28bead
commit a51477093b
6 changed files with 507 additions and 22 deletions

@ -38,7 +38,7 @@ from Blender import *
import BPyMesh
# reload(BPyMesh)
import boxpack2d
# import boxpack2d
# reload(boxpack2d) # for developing.
from math import sqrt
@ -437,8 +437,9 @@ def lightmap_uvpack(me, BOX_DIV = 8, MARGIN_DIV = 512):
# boxes2Pack.append([islandIdx, w,h])
print 'packing boxes', len(pretty_faces), '...',
boxes2Pack = [ [i, pf.width, pf.height] for i, pf in enumerate(pretty_faces)]
packWidth, packHeight, packedLs = boxpack2d.boxPackIter(boxes2Pack)
boxes2Pack = [ [0.0, 0.0, pf.width, pf.height, i] for i, pf in enumerate(pretty_faces)]
packWidth, packHeight = Geometry.BoxPack2D(boxes2Pack)
# print packWidth, packHeight
packWidth = float(packWidth)
@ -453,9 +454,9 @@ def lightmap_uvpack(me, BOX_DIV = 8, MARGIN_DIV = 512):
# Apply the boxes back to the UV coords.
print 'writing back UVs',
for box in enumerate(packedLs):
pf = pretty_faces[box[1][0]]
pf.place(box[1][1], box[1][2], packWidth, packHeight, margin_w, margin_h)
for i, box in enumerate(boxes2Pack):
pretty_faces[i].place(box[0], box[1], packWidth, packHeight, margin_w, margin_h)
# pf.place(box[1][1], box[1][2], packWidth, packHeight, margin_w, margin_h)
print 'done'
Window.WaitCursor(1)
@ -475,12 +476,12 @@ def main():
return
me = ob.getData(mesh=1)
BOX_DIV = Draw.Create(8)
BOX_DIV = Draw.Create(12)
MARGIN_DIV = Draw.Create(0.1)
if not Draw.PupBlock('Lightmap Pack', [\
('Pack Quality: ', BOX_DIV, 1, 32, 'Pre Packing before the complex boxpack'),\
('Pack Quality: ', BOX_DIV, 1, 48, 'Pre Packing before the complex boxpack'),\
('Margin: ', MARGIN_DIV, 0.001, 1.0, 'Size of the margin as a division of the UV')\
]):
return

@ -56,7 +56,7 @@ global USER_FILL_HOLES_QUALITY
USER_FILL_HOLES = None
USER_FILL_HOLES_QUALITY = None
import boxpack2d
# import boxpack2d
# reload(boxpack2d) # for developing.
dict_matrix = {}
@ -718,7 +718,7 @@ def packIslands(islandList):
# Make a synchronised list with the islands
# so we can box pak the islands.
boxes2Pack = []
packBoxes = []
# Keep a list of X/Y offset so we can save time by writing the
# uv's and packed data in one pass.
@ -753,17 +753,18 @@ def packIslands(islandList):
islandOffsetList.append((minx, miny))
# Add to boxList. use the island idx for the BOX id.
boxes2Pack.append([islandIdx, w,h])
packBoxes.append([0, 0, w, h])
islandIdx+=1
# Now we have a list of boxes to pack that syncs
# with the islands.
#print '\tPacking UV Islands...'
Window.DrawProgressBar(0.7, 'Packing %i UV Islands...' % len(boxes2Pack) )
Window.DrawProgressBar(0.7, 'Packing %i UV Islands...' % len(packBoxes) )
time1 = sys.time()
packWidth, packHeight, packedLs = boxpack2d.boxPackIter(boxes2Pack)
packWidth, packHeight = Geometry.BoxPack2D(packBoxes)
# print 'Box Packing Time:', sys.time() - time1
#if len(pa ckedLs) != len(islandList):
@ -773,9 +774,6 @@ def packIslands(islandList):
Window.DrawProgressBar(0.8, 'Writing Packed Data to faces')
# Sort by ID, so there in sync again
try: packedLs.sort(lambda key = A: A[0])
except: packedLs.sort(lambda A, B: cmp(A[0] , B[0]))
islandIdx = len(islandList)
# Having these here avoids devide by 0
if islandIdx:
@ -792,9 +790,8 @@ def packIslands(islandList):
islandIdx -=1
# Write the packed values to the UV's
xoffset = packedLs[islandIdx][1] - islandOffsetList[islandIdx][0]
yoffset = packedLs[islandIdx][2] - islandOffsetList[islandIdx][1]
xoffset = packBoxes[islandIdx][0] - islandOffsetList[islandIdx][0]
yoffset = packBoxes[islandIdx][1] - islandOffsetList[islandIdx][1]
for f in islandList[islandIdx]: # Offsetting the UV's so they fit in there packed box
for uv in f.uv:

@ -308,7 +308,7 @@ static PyObject *Blender_Get( PyObject * self, PyObject * args )
ret = PyInt_FromLong( G.scene->r.efra );
else if( StringEqual( str, "filename" ) ) {
if ( strstr(G.main->name, ".B.blend") != 0)
ret = EXPP_incr_ret( Py_None );
ret = PyString_FromString("");
else
ret = PyString_FromString(G.main->name);
}

@ -54,15 +54,18 @@
/*-- forward declarations -- */
static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * args );
static PyObject *M_Geometry_LineIntersect2D( PyObject * self, PyObject * args );
static PyObject *M_Geometry_BoxPack2D( PyObject * self, PyObject * args );
/*-------------------------DOC STRINGS ---------------------------*/
static char M_Geometry_doc[] = "The Blender Geometry module\n\n";
static char M_Geometry_PolyFill_doc[] = "(veclist_list) - takes a list of polylines (each point a vector) and returns the point indicies for a polyline filled with triangles";
static char M_Geometry_LineIntersect2D_doc[] = "(lineA_p1, lineA_p2, lineB_p1, lineB_p2) - takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None";
static char M_Geometry_BoxPack2D_doc[] = "";
/*-----------------------METHOD DEFINITIONS ----------------------*/
struct PyMethodDef M_Geometry_methods[] = {
{"PolyFill", ( PyCFunction ) M_Geometry_PolyFill, METH_VARARGS, M_Geometry_PolyFill_doc},
{"LineIntersect2D", ( PyCFunction ) M_Geometry_LineIntersect2D, METH_VARARGS, M_Geometry_LineIntersect2D_doc},
{"BoxPack2D", ( PyCFunction ) M_Geometry_BoxPack2D, METH_VARARGS, M_Geometry_BoxPack2D_doc},
{NULL, NULL, 0, NULL}
};
/*----------------------------MODULE INIT-------------------------*/
@ -270,3 +273,442 @@ static PyObject *M_Geometry_LineIntersect2D( PyObject * self, PyObject * args )
}
Py_RETURN_NONE;
}
/* Campbells BoxPacker ported from Python */
/* free vert flags */
#define EUL 0.0000001
#define BLF 1
#define TRF 2
#define TLF 4
#define BRF 8
#define BL 0
#define TR 1
#define TL 2
#define BR 3
#define BOXLEFT(b) b->v[BL]->x
#define BOXRIGHT(b) b->v[TR]->x
#define BOXBOTTOM(b) b->v[BL]->y
#define BOXTOP(b) b->v[TR]->y
#define BOXAREA(b) (b->w * b->h)
#define UPDATE_V34X(b) b->v[TL]->x = b->v[BL]->x; b->v[BR]->x = b->v[TR]->x
#define UPDATE_V34Y(b) b->v[TL]->y = b->v[TR]->y; b->v[BR]->y = b->v[BL]->y
#define UPDATE_V34(b) UPDATE_V34X(b) UPDATE_V34Y(b)
#define SET_BOXLEFT(b, f) b->v[TR]->x = f + b->w; b->v[BL]->x = f; UPDATE_V34X(b)
#define SET_BOXRIGHT(b, f) b->v[BL]->x = f - b->w; b->v[TR]->x = f; UPDATE_V34X(b)
#define SET_BOXBOTTOM(b, f) b->v[TR]->y = f + b->h; b->v[BL]->y = f; UPDATE_V34Y(b)
#define SET_BOXTOP(b, f) b->v[BL]->y = f - b->h; b->v[TR]->y = f; UPDATE_V34Y(b)
#define BOXINTERSECT(b1, b2) (!(BOXLEFT(b1)+EUL>=BOXRIGHT(b2) || BOXBOTTOM(b1)+EUL>=BOXTOP(b2) || BOXRIGHT(b1)-EUL<=BOXLEFT(b2) || BOXTOP(b1)-EUL<=BOXBOTTOM(b2) ))
#define BOXDEBUG(b) printf("\tBox Debug i %i, w:%.3f h:%.3f x:%.3f y:%.3f\n", b->index, b->w, b->h, b->x, b->y)
static int box_areasort(const void *p1, const void *p2)
{
const boxPack *b1=p1, *b2=p2;
float a1, a2;
a1 = BOXAREA(b1);
a2 = BOXAREA(b2);
/*printf("a1 a2 %f %f\n", a1, a2);*/
/* sort largest to smallest */
if ( a1 < a2 ) return 1;
else if ( a1 > a2 ) return -1;
return 0;
}
static float box_width;
static float box_height;
static boxVert *vertarray;
static int vertex_sort(const void *p1, const void *p2)
{
boxVert *v1, *v2;
float a1, a2;
v1 = vertarray + ((int *) p1)[0];
v2 = vertarray + ((int *) p2)[0];
// self.verts.sort(key = lambda b: max(b.x+w, b.y+h) ) # Reverse area sort
a1 = MAX2(v1->x+box_width, v1->y+box_height);
a2 = MAX2(v2->x+box_width, v2->y+box_height);
/*printf("a1 a2 %f %f\n", a1, a2);*/
/* sort largest to smallest */
if ( a1 > a2 ) return 1;
else if ( a1 < a2 ) return -1;
return 0;
}
static void boxPackAll(boxPack *boxarray, int len, float *tot_width, float *tot_height)
{
boxVert *vert;
int box_index, verts_pack_len, i, j, k, isect; /* what box are we up to packing */
int quad_flags[4]= {BLF,TRF,TLF,BRF}; /* use for looping */
boxPack *box, *box_test;
int *vertex_pack_indicies;
if (!len) {
*tot_width = 0.0;
*tot_height = 0.0;
return;
}
/* Sort boxes, biggest first */
qsort(boxarray, len, sizeof(boxPack), box_areasort);
/* add verts to the boxes, these are only used internally */
vert = vertarray = MEM_mallocN( len*4*sizeof(boxVert), "boxPack verts");
vertex_pack_indicies = MEM_mallocN( len*3*sizeof(int), "boxPack indicies");
i=0;
for (box= boxarray, box_index= 0; box_index < len; box_index++, box++) {
vert->blb = vert->brb = vert->tlb =\
vert->isect_cache[0] = vert->isect_cache[1] =\
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = 15 &~ TRF;
vert->trb = box;
vert->index = i; i++;
box->v[BL] = vert; vert++;
vert->trb= vert->brb = vert->tlb =\
vert->isect_cache[0] = vert->isect_cache[1] =\
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = 15 &~ BLF;
vert->blb = box;
vert->index = i; i++;
box->v[TR] = vert; vert++;
vert->trb = vert->blb = vert->tlb =\
vert->isect_cache[0] = vert->isect_cache[1] =\
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = 15 &~ BRF;
vert->brb = box;
vert->index = i; i++;
box->v[TL] = vert; vert++;
vert->trb = vert->blb = vert->brb =\
vert->isect_cache[0] = vert->isect_cache[1] =\
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = 15 &~ TLF;
vert->tlb = box;
vert->index = i; i++;
box->v[BR] = vert; vert++;
}
vert = NULL;
/* Pack the First box!
* then enter the main boxpacking loop */
box = boxarray; /* get the first box */
/* First time, no boxes packed */
box->v[BL]->free = 0; /* Cant use any if these */
box->v[BR]->free &= ~(BLF|BRF);
box->v[TL]->free &= ~(BLF|TLF);
*tot_width = box->w;
*tot_height = box->h;
/* This sets all the vertex locations */
SET_BOXLEFT(box, 0.0);
SET_BOXBOTTOM(box, 0.0);
for (i=0; i<3; i++)
vertex_pack_indicies[i] = box->v[i+1]->index;
verts_pack_len = 3;
box++; /* next box, needed for the loop below */
/* ...done packing the first box */
/* Main boxpacking loop */
for (box_index=1; box_index < len; box_index++, box++) {
/* Sort the verts, these constants are used in sorting */
box_width = box->w;
box_height = box->h;
qsort(vertex_pack_indicies, verts_pack_len, sizeof(int), vertex_sort);
/* Pack the box in with the others */
/* sort the verts */
isect = 1;
for (i=0; i<verts_pack_len && isect; i++) {
vert = vertarray + vertex_pack_indicies[i];
/* printf("\ttesting vert %i %i %i %f %f\n", i, vert->free, verts_pack_len, vert->x, vert->y); */
/* This vert has a free quaderent
* Test if we can place the box here
* vert->free & quad_flags[j] - Checks
* */
for (j=0; (j<4) && isect; j++) {
if (vert->free & quad_flags[j]) {
switch (j) {
case BL:
SET_BOXRIGHT(box, vert->x);
SET_BOXTOP(box, vert->y);
break;
case TR:
SET_BOXLEFT(box, vert->x);
SET_BOXBOTTOM(box, vert->y);
break;
case TL:
SET_BOXRIGHT(box, vert->x);
SET_BOXBOTTOM(box, vert->y);
break;
case BR:
SET_BOXLEFT(box, vert->x);
SET_BOXTOP(box, vert->y);
break;
}
/* Now we need to check that the box intersects
* with any other boxes
* Assume no intersection... */
isect = 0;
if (/* Constrain boxes to positive X/Y values */
BOXLEFT(box)<0.0 || BOXBOTTOM(box)<0.0 ||
/* check for last intersected */
(vert->isect_cache[j] && BOXINTERSECT(box, vert->isect_cache[j]))
) {
/* Here we check that the last intersected
* box will intersect with this one using
* isect_cache that can store a pointer to a
* box for each quaderent
* big speedup */
isect = 1;
} else {
/* do a full saech for colliding box
* this is realy slow, some spacialy divided
* datastructure would be better */
for (box_test = boxarray; box_test != box; box_test++) {
if BOXINTERSECT(box, box_test) {
/* Store the last intersecting here
* as cache for faster checking next time around */
vert->isect_cache[j] = box_test;
isect = 1;
break;
}
}
}
if (!isect) {
/* maintain the total width and height */
(*tot_width) = MAX2(BOXRIGHT(box), (*tot_width));
(*tot_height) = MAX2(BOXTOP(box), (*tot_height));
/* Place the box */
vert->free &= ~quad_flags[j];
switch (j) {
case TR:
box->v[BL]= vert;
vert->trb = box;
break;
case TL:
box->v[BR]= vert;
vert->tlb = box;
break;
case BR:
box->v[TL]= vert;
vert->brb = box;
break;
case BL:
box->v[TR]= vert;
vert->blb = box;
break;
}
/* Mask free flags for verts that are on the bottom or side
* so we dont get boxes outside the given rectangle ares
*
* We can do an else/if here because only the first
* box can be at the very bottom left corner */
if (BOXLEFT(box) <= 0) {
box->v[TL]->free &= ~(TLF|BLF);
box->v[BL]->free &= ~(TLF|BLF);
} else if (BOXBOTTOM(box) <= 0) {
box->v[BL]->free &= ~(BRF|BLF);
box->v[BR]->free &= ~(BRF|BLF);
}
/* The following block of code does a logical
* check with 2 adjacent boxes, its possible to
* flag verts on one or both of the boxes
* as being used by checking the width or
* height of both boxes */
if (vert->tlb && vert->trb && (box == vert->tlb || box == vert->trb)) {
if (vert->tlb->h > vert->trb->h) {
vert->trb->v[TL]->free &= ~(TLF|BLF);
} else if (vert->tlb->h < vert->trb->h) {
vert->tlb->v[TR]->free &= ~(TRF|BRF);
} else { /*same*/
vert->tlb->v[TR]->free &= ~BLF;
vert->trb->v[TL]->free &= ~BRF;
}
} else if (vert->blb && vert->brb && (box == vert->blb || box == vert->brb)) {
if (vert->blb->h > vert->brb->h) {
vert->brb->v[BL]->free &= ~(TLF|BLF);
} else if (vert->blb->h < vert->brb->h) {
vert->blb->v[BR]->free &= ~(TRF|BRF);
} else { /*same*/
vert->blb->v[BR]->free &= ~TRF;
vert->brb->v[BL]->free &= ~TLF;
}
}
/* Horizontal */
if (vert->tlb && vert->blb && (box == vert->tlb || box == vert->blb)) {
if (vert->tlb->w > vert->blb->w) {
vert->blb->v[TL]->free &= ~(TLF|TRF);
} else if (vert->tlb->w < vert->blb->w) {
vert->tlb->v[BL]->free &= ~(BLF|BRF);
} else { /*same*/
vert->blb->v[TL]->free &= ~TRF;
vert->tlb->v[BL]->free &= ~BRF;
}
} else if (vert->trb && vert->brb && (box == vert->trb || box == vert->brb)) {
if (vert->trb->w > vert->brb->w) {
vert->brb->v[TR]->free &= ~(TRF|TRF);
} else if (vert->trb->w < vert->brb->w) {
vert->trb->v[BR]->free &= ~(BLF|BRF);
} else { /*same*/
vert->brb->v[TR]->free &= ~TLF;
vert->trb->v[BR]->free &= ~BLF;
}
}
/* End logical check */
for (k=0; k<4; k++) {
if (box->v[k] != vert) {
vertex_pack_indicies[verts_pack_len] = box->v[k]->index;
verts_pack_len++;
}
}
/* The Box verts are only used interially
* Update the box x and y since thats what external
* functions will see */
box->x = BOXLEFT(box);
box->y = BOXBOTTOM(box);
}
}
}
}
}
/* free all the verts, not realy needed because they shouldebt be
* touched anymore but accessing the pointers woud crash blender */
for (box_index=0; box_index < len; box_index++) {
box = boxarray+box_index;
box->v[0] = box->v[1] = box->v[2] = box->v[3] = NULL;
}
MEM_freeN(vertex_pack_indicies);
MEM_freeN(vertarray);
}
int boxPack_FromPyObject(PyObject * value, boxPack **boxarray )
{
int len, i;
PyObject *list_item, *item_1, *item_2;
boxPack *box;
/* Error checking must alredy be done */
if( !PyList_Check( value ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"can only back a list of [x,y,x,w]" );
len = PyList_Size( value );
(*boxarray) = MEM_mallocN( len*sizeof(boxPack), "boxPack box");
for( i = 0; i < len; i++ ) {
list_item = PyList_GET_ITEM( value, i );
if( !PyList_Check( list_item ) || PyList_Size( list_item ) < 4 ) {
MEM_freeN(*boxarray);
return EXPP_ReturnIntError( PyExc_TypeError,
"can only back a list of [x,y,x,w]" );
}
box = (*boxarray)+i;
item_1 = PyList_GET_ITEM(list_item, 2);
item_2 = PyList_GET_ITEM(list_item, 3);
if (!PyNumber_Check(item_1) || !PyNumber_Check(item_2)) {
MEM_freeN(*boxarray);
return EXPP_ReturnIntError( PyExc_TypeError,
"can only back a list of 2d boxes [x,y,x,w]" );
}
box->x = box->y = 0.0f;
box->w = (float)PyFloat_AsDouble( item_1 );
box->h = (float)PyFloat_AsDouble( item_2 );
box->index = i;
/* verts will be added later */
}
return 0;
}
void boxPack_ToPyObject(PyObject * value, boxPack **boxarray)
{
int len, i;
PyObject *list_item;
boxPack *box;
len = PyList_Size( value );
for( i = 0; i < len; i++ ) {
box = (*boxarray)+i;
list_item = PyList_GET_ITEM( value, box->index );
PyList_SET_ITEM( list_item, 0, PyFloat_FromDouble( box->x ));
PyList_SET_ITEM( list_item, 1, PyFloat_FromDouble( box->y ));
}
MEM_freeN(*boxarray);
}
static PyObject *M_Geometry_BoxPack2D( PyObject * self, PyObject * args )
{
PyObject *boxlist; /*return this list of tri's */
boxPack *boxarray;
float tot_width, tot_height;
int len;
int error;
if(!PyArg_ParseTuple ( args, "O", &boxlist) || !PyList_Check(boxlist)) {
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of boxes [[x,y,w,h], ... ]" );
}
len = PyList_Size( boxlist );
if (!len)
return Py_BuildValue( "ff", 0.0, 0.0);
error = boxPack_FromPyObject(boxlist, &boxarray);
if (error!=0) return NULL;
/* Non Python function */
boxPackAll(boxarray, len, &tot_width, &tot_height);
boxPack_ToPyObject(boxlist, &boxarray);
return Py_BuildValue( "ff", tot_width, tot_height);
}

@ -39,4 +39,37 @@
PyObject *Geometry_Init( void );
/* Box Packer */
typedef struct boxVert {
float x;
float y;
short free;
struct boxPack *trb; /* top right box */
struct boxPack *blb; /* bottom left box */
struct boxPack *brb; /* bottom right box */
struct boxPack *tlb; /* top left box */
/* Store last intersecting boxes here
* speedup intersection testing */
struct boxPack *isect_cache[4];
int index;
} boxVert;
typedef struct boxPack {
float x;
float y;
float w;
float h;
int index;
/* Verts this box uses
* (BL,TR,TL,BR) / 0,1,2,3 */
boxVert *v[4];
} boxPack;
#endif /* EXPP_Geometry_H */

@ -46,4 +46,16 @@ def LineIntersect2D(vec1, vec2, vec3, vec4):
Takes 2 lines vec1, vec2 for the 2 points of the first line and vec2, vec3 for the 2 points of the second line.
@rtype: Vector
@return: a 2D Vector for the intersection or None where there is no intersection.
"""
"""
def BoxPack2D(boxlist):
"""
Takes a list of 2D boxes and packs them into a square.
Each box in boxlist must be a list of at least 4 items - [x,y,w,h], after running this script,
the X and Y values in each box will be moved to packed, non overlapping locations.
@rtype: tuple
@return: a tuple pair - (width, height) of all the packed boxes.
"""