rename internal matrix struct member vars to avoid confusion

Matrix.contigPtr --> matrix
Matrix.row_size --> num_col
Matrix.col_size --> num_row
This commit is contained in:
Campbell Barton 2011-12-20 04:11:23 +00:00
parent 3d8ee28750
commit a8ed803b66
8 changed files with 164 additions and 164 deletions

@ -642,7 +642,7 @@ PyObject *pyrna_math_object_from_array(PointerRNA *ptr, PropertyRNA *prop)
if (len==16) {
if (is_thick) {
ret= Matrix_CreatePyObject(NULL, 4, 4, Py_NEW, NULL);
RNA_property_float_get_array(ptr, prop, ((MatrixObject *)ret)->contigPtr);
RNA_property_float_get_array(ptr, prop, ((MatrixObject *)ret)->matrix);
}
else {
PyObject *mat_cb= Matrix_CreatePyObject_cb(ret, 4,4, mathutils_rna_matrix_cb_index, FALSE);
@ -653,7 +653,7 @@ PyObject *pyrna_math_object_from_array(PointerRNA *ptr, PropertyRNA *prop)
else if (len==9) {
if (is_thick) {
ret= Matrix_CreatePyObject(NULL, 3, 3, Py_NEW, NULL);
RNA_property_float_get_array(ptr, prop, ((MatrixObject *)ret)->contigPtr);
RNA_property_float_get_array(ptr, prop, ((MatrixObject *)ret)->matrix);
}
else {
PyObject *mat_cb= Matrix_CreatePyObject_cb(ret, 3,3, mathutils_rna_matrix_cb_index, FALSE);

@ -212,7 +212,7 @@ int mathutils_any_to_rotmat(float rmat[3][3], PyObject *value, const char *error
if (BaseMath_ReadCallback((BaseMathObject *)value) == -1) {
return -1;
}
else if (((MatrixObject *)value)->col_size < 3 || ((MatrixObject *)value)->row_size < 3) {
else if (((MatrixObject *)value)->num_row < 3 || ((MatrixObject *)value)->num_col < 3) {
PyErr_Format(PyExc_ValueError,
"%.200s: matrix must have minimum 3x3 dimensions",
error_prefix);

@ -135,7 +135,7 @@ static PyObject *Color_str(ColorObject * self)
ds= BLI_dynstr_new();
BLI_dynstr_appendf(ds, "<Color (r=%.4f, g=%.4f, b=%.4f) >",
BLI_dynstr_appendf(ds, "<Color (r=%.4f, g=%.4f, b=%.4f)>",
self->col[0], self->col[1], self->col[2]);
return mathutils_dynstr_to_py(ds); /* frees ds */

@ -327,7 +327,7 @@ static PyObject *Euler_str(EulerObject * self)
ds= BLI_dynstr_new();
BLI_dynstr_appendf(ds, "<Euler (x=%.4f, y=%.4f, z=%.4f), order='%s' >",
BLI_dynstr_appendf(ds, "<Euler (x=%.4f, y=%.4f, z=%.4f), order='%s'>",
self->eul[0], self->eul[1], self->eul[2], euler_order_str(self));
return mathutils_dynstr_to_py(ds); /* frees ds */

@ -59,7 +59,7 @@ static int mathutils_matrix_vector_get(BaseMathObject *bmo, int subtype)
if (BaseMath_ReadCallback(self) == -1)
return -1;
for (index=0; index < self->col_size; index++) {
for (index=0; index < self->num_row; index++) {
bmo->data[index] = MATRIX_ITEM(self, subtype, index);
}
@ -74,7 +74,7 @@ static int mathutils_matrix_vector_set(BaseMathObject *bmo, int subtype)
if (BaseMath_ReadCallback(self) == -1)
return -1;
for (index=0; index < self->col_size; index++) {
for (index=0; index < self->num_row; index++) {
MATRIX_ITEM(self, subtype, index) = bmo->data[index];
}
@ -135,16 +135,16 @@ static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
PyObject *arg= PyTuple_GET_ITEM(args, 0);
/* -1 is an error, size checks will accunt for this */
const unsigned short row_size= PySequence_Size(arg);
const unsigned short num_col= PySequence_Size(arg);
if (row_size >= 2 && row_size <= 4) {
if (num_col >= 2 && num_col <= 4) {
PyObject *item= PySequence_GetItem(arg, 0);
const unsigned short col_size= PySequence_Size(item);
const unsigned short num_row= PySequence_Size(item);
Py_XDECREF(item);
if (col_size >= 2 && col_size <= 4) {
if (num_row >= 2 && num_row <= 4) {
/* sane row & col size, new matrix and assign as slice */
PyObject *matrix= Matrix_CreatePyObject(NULL, row_size, col_size, Py_NEW, type);
PyObject *matrix= Matrix_CreatePyObject(NULL, num_col, num_row, Py_NEW, type);
if (Matrix_ass_slice((MatrixObject *)matrix, 0, INT_MAX, arg) == 0) {
return matrix;
}
@ -632,17 +632,17 @@ void matrix_as_3x3(float mat[3][3], MatrixObject *self)
/* assumes rowsize == colsize is checked and the read callback has run */
static float matrix_determinant_internal(MatrixObject *self)
{
if (self->row_size == 2) {
if (self->num_col == 2) {
return determinant_m2(MATRIX_ITEM(self, 0, 0), MATRIX_ITEM(self, 0, 1),
MATRIX_ITEM(self, 1, 0), MATRIX_ITEM(self, 1, 1));
}
else if (self->row_size == 3) {
else if (self->num_col == 3) {
return determinant_m3(MATRIX_ITEM(self, 0, 0), MATRIX_ITEM(self, 0, 1), MATRIX_ITEM(self, 0, 2),
MATRIX_ITEM(self, 1, 0), MATRIX_ITEM(self, 1, 1), MATRIX_ITEM(self, 1, 2),
MATRIX_ITEM(self, 2, 0), MATRIX_ITEM(self, 2, 1), MATRIX_ITEM(self, 2, 2));
}
else {
return determinant_m4((float (*)[4])self->contigPtr);
return determinant_m4((float (*)[4])self->matrix);
}
}
@ -664,17 +664,17 @@ static PyObject *Matrix_to_quaternion(MatrixObject *self)
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if ((self->col_size < 3) || (self->row_size < 3) || (self->col_size != self->row_size)) {
if ((self->num_row < 3) || (self->num_col < 3) || (self->num_row != self->num_col)) {
PyErr_SetString(PyExc_ValueError,
"Matrix.to_quat(): "
"inappropriate matrix size - expects 3x3 or 4x4 matrix");
return NULL;
}
if (self->col_size == 3) {
mat3_to_quat(quat, (float (*)[3])self->contigPtr);
if (self->num_row == 3) {
mat3_to_quat(quat, (float (*)[3])self->matrix);
}
else {
mat4_to_quat(quat, (float (*)[4])self->contigPtr);
mat4_to_quat(quat, (float (*)[4])self->matrix);
}
return Quaternion_CreatePyObject(quat, Py_NEW, NULL);
@ -721,11 +721,11 @@ static PyObject *Matrix_to_euler(MatrixObject *self, PyObject *args)
}
/*must be 3-4 cols, 3-4 rows, square matrix*/
if (self->col_size ==3 && self->row_size ==3) {
mat= (float (*)[3])self->contigPtr;
if (self->num_row ==3 && self->num_col ==3) {
mat= (float (*)[3])self->matrix;
}
else if (self->col_size ==4 && self->row_size ==4) {
copy_m3_m4(tmat, (float (*)[4])self->contigPtr);
else if (self->num_row ==4 && self->num_col ==4) {
copy_m3_m4(tmat, (float (*)[4])self->matrix);
mat= tmat;
}
else {
@ -776,8 +776,8 @@ static PyObject *Matrix_resize_4x4(MatrixObject *self)
return NULL;
}
self->contigPtr = PyMem_Realloc(self->contigPtr, (sizeof(float) * 16));
if (self->contigPtr == NULL) {
self->matrix = PyMem_Realloc(self->matrix, (sizeof(float) * 16));
if (self->matrix == NULL) {
PyErr_SetString(PyExc_MemoryError,
"Matrix.resize_4x4(): "
"problem allocating pointer space");
@ -785,31 +785,31 @@ static PyObject *Matrix_resize_4x4(MatrixObject *self)
}
/*move data to new spot in array + clean*/
for (blank_rows = (4 - self->row_size); blank_rows > 0; blank_rows--) {
for (blank_rows = (4 - self->num_col); blank_rows > 0; blank_rows--) {
for (x = 0; x < 4; x++) {
index = (4 * (self->row_size + (blank_rows - 1))) + x;
index = (4 * (self->num_col + (blank_rows - 1))) + x;
if (index == 10 || index == 15) {
self->contigPtr[index] = 1.0f;
self->matrix[index] = 1.0f;
}
else {
self->contigPtr[index] = 0.0f;
self->matrix[index] = 0.0f;
}
}
}
for (x = 1; x <= self->row_size; x++) {
first_row_elem = (self->col_size * (self->row_size - x));
curr_pos = (first_row_elem + (self->col_size -1));
new_pos = (4 * (self->row_size - x)) + (curr_pos - first_row_elem);
for (blank_columns = (4 - self->col_size); blank_columns > 0; blank_columns--) {
self->contigPtr[new_pos + blank_columns] = 0.0f;
for (x = 1; x <= self->num_col; x++) {
first_row_elem = (self->num_row * (self->num_col - x));
curr_pos = (first_row_elem + (self->num_row -1));
new_pos = (4 * (self->num_col - x)) + (curr_pos - first_row_elem);
for (blank_columns = (4 - self->num_row); blank_columns > 0; blank_columns--) {
self->matrix[new_pos + blank_columns] = 0.0f;
}
for ( ; curr_pos >= first_row_elem; curr_pos--) {
self->contigPtr[new_pos] = self->contigPtr[curr_pos];
self->matrix[new_pos] = self->matrix[curr_pos];
new_pos--;
}
}
self->row_size = 4;
self->col_size = 4;
self->num_col = 4;
self->num_row = 4;
Py_RETURN_NONE;
}
@ -827,12 +827,12 @@ static PyObject *Matrix_to_4x4(MatrixObject *self)
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (self->col_size==4 && self->row_size==4) {
return Matrix_CreatePyObject(self->contigPtr, 4, 4, Py_NEW, Py_TYPE(self));
if (self->num_row==4 && self->num_col==4) {
return Matrix_CreatePyObject(self->matrix, 4, 4, Py_NEW, Py_TYPE(self));
}
else if (self->col_size==3 && self->row_size==3) {
else if (self->num_row==3 && self->num_col==3) {
float mat[4][4];
copy_m4_m3(mat, (float (*)[3])self->contigPtr);
copy_m4_m3(mat, (float (*)[3])self->matrix);
return Matrix_CreatePyObject((float *)mat, 4, 4, Py_NEW, Py_TYPE(self));
}
/* TODO, 2x2 matrix */
@ -858,7 +858,7 @@ static PyObject *Matrix_to_3x3(MatrixObject *self)
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if ((self->col_size < 3) || (self->row_size < 3)) {
if ((self->num_row < 3) || (self->num_col < 3)) {
PyErr_SetString(PyExc_TypeError,
"Matrix.to_3x3(): inappropriate matrix size");
return NULL;
@ -882,7 +882,7 @@ static PyObject *Matrix_to_translation(MatrixObject *self)
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if ((self->col_size < 3) || self->row_size < 4) {
if ((self->num_row < 3) || self->num_col < 4) {
PyErr_SetString(PyExc_TypeError,
"Matrix.to_translation(): "
"inappropriate matrix size");
@ -912,7 +912,7 @@ static PyObject *Matrix_to_scale(MatrixObject *self)
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if ((self->col_size < 3) || (self->row_size < 3)) {
if ((self->num_row < 3) || (self->num_col < 3)) {
PyErr_SetString(PyExc_TypeError,
"Matrix.to_scale(): "
"inappropriate matrix size, 3x3 minimum size");
@ -950,7 +950,7 @@ static PyObject *Matrix_invert(MatrixObject *self)
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (self->row_size != self->col_size) {
if (self->num_col != self->num_row) {
PyErr_SetString(PyExc_TypeError,
"Matrix.invert(ed): "
"only square matrices are supported");
@ -962,25 +962,25 @@ static PyObject *Matrix_invert(MatrixObject *self)
if (det != 0) {
/*calculate the classical adjoint*/
if (self->row_size == 2) {
if (self->num_col == 2) {
mat[0] = MATRIX_ITEM(self, 1, 1);
mat[1] = -MATRIX_ITEM(self, 0, 1);
mat[2] = -MATRIX_ITEM(self, 1, 0);
mat[3] = MATRIX_ITEM(self, 0, 0);
}
else if (self->row_size == 3) {
adjoint_m3_m3((float (*)[3]) mat,(float (*)[3])self->contigPtr);
else if (self->num_col == 3) {
adjoint_m3_m3((float (*)[3]) mat,(float (*)[3])self->matrix);
}
else if (self->row_size == 4) {
adjoint_m4_m4((float (*)[4]) mat, (float (*)[4])self->contigPtr);
else if (self->num_col == 4) {
adjoint_m4_m4((float (*)[4]) mat, (float (*)[4])self->matrix);
}
/*divide by determinate*/
for (x = 0; x < (self->row_size * self->col_size); x++) {
for (x = 0; x < (self->num_col * self->num_row); x++) {
mat[x] /= det;
}
/*set values*/
for (x = 0; x < self->row_size; x++) {
for (y = 0; y < self->col_size; y++) {
for (x = 0; x < self->num_col; x++) {
for (y = 0; y < self->num_row; y++) {
MATRIX_ITEM(self, x, y) = mat[z];
z++;
}
@ -1034,7 +1034,7 @@ static PyObject *Matrix_rotate(MatrixObject *self, PyObject *value)
if (mathutils_any_to_rotmat(other_rmat, value, "matrix.rotate(value)") == -1)
return NULL;
if (self->col_size != 3 || self->row_size != 3) {
if (self->num_row != 3 || self->num_col != 3) {
PyErr_SetString(PyExc_TypeError,
"Matrix.rotate(): "
"must have 3x3 dimensions");
@ -1044,7 +1044,7 @@ static PyObject *Matrix_rotate(MatrixObject *self, PyObject *value)
matrix_as_3x3(self_rmat, self);
mul_m3_m3m3(rmat, other_rmat, self_rmat);
copy_m3_m3((float (*)[3])(self->contigPtr), rmat);
copy_m3_m3((float (*)[3])(self->matrix), rmat);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
@ -1067,7 +1067,7 @@ static PyObject *Matrix_decompose(MatrixObject *self)
float quat[4];
float size[3];
if (self->col_size != 4 || self->row_size != 4) {
if (self->num_row != 4 || self->num_col != 4) {
PyErr_SetString(PyExc_TypeError,
"Matrix.decompose(): "
"inappropriate matrix size - expects 4x4 matrix");
@ -1077,7 +1077,7 @@ static PyObject *Matrix_decompose(MatrixObject *self)
if (BaseMath_ReadCallback(self) == -1)
return NULL;
mat4_to_loc_rot_size(loc, rot, size, (float (*)[4])self->contigPtr);
mat4_to_loc_rot_size(loc, rot, size, (float (*)[4])self->matrix);
mat3_to_quat(quat, rot);
ret= PyTuple_New(3);
@ -1110,7 +1110,7 @@ static PyObject *Matrix_lerp(MatrixObject *self, PyObject *args)
if (!PyArg_ParseTuple(args, "O!f:lerp", &matrix_Type, &mat2, &fac))
return NULL;
if (self->row_size != mat2->row_size || self->col_size != mat2->col_size) {
if (self->num_col != mat2->num_col || self->num_row != mat2->num_row) {
PyErr_SetString(PyExc_ValueError,
"Matrix.lerp(): "
"expects both matrix objects of the same dimensions");
@ -1121,11 +1121,11 @@ static PyObject *Matrix_lerp(MatrixObject *self, PyObject *args)
return NULL;
/* TODO, different sized matrix */
if (self->row_size==4 && self->col_size==4) {
blend_m4_m4m4((float (*)[4])mat, (float (*)[4])self->contigPtr, (float (*)[4])mat2->contigPtr, fac);
if (self->num_col==4 && self->num_row==4) {
blend_m4_m4m4((float (*)[4])mat, (float (*)[4])self->matrix, (float (*)[4])mat2->matrix, fac);
}
else if (self->row_size==3 && self->col_size==3) {
blend_m3_m3m3((float (*)[3])mat, (float (*)[3])self->contigPtr, (float (*)[3])mat2->contigPtr, fac);
else if (self->num_col==3 && self->num_row==3) {
blend_m3_m3m3((float (*)[3])mat, (float (*)[3])self->matrix, (float (*)[3])mat2->matrix, fac);
}
else {
PyErr_SetString(PyExc_ValueError,
@ -1134,7 +1134,7 @@ static PyObject *Matrix_lerp(MatrixObject *self, PyObject *args)
return NULL;
}
return Matrix_CreatePyObject(mat, self->row_size, self->col_size, Py_NEW, Py_TYPE(self));
return Matrix_CreatePyObject(mat, self->num_col, self->num_row, Py_NEW, Py_TYPE(self));
}
/*---------------------------matrix.determinant() ----------------*/
@ -1153,7 +1153,7 @@ static PyObject *Matrix_determinant(MatrixObject *self)
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (self->row_size != self->col_size) {
if (self->num_col != self->num_row) {
PyErr_SetString(PyExc_TypeError,
"Matrix.determinant(): "
"only square matrices are supported");
@ -1175,23 +1175,23 @@ static PyObject *Matrix_transpose(MatrixObject *self)
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (self->row_size != self->col_size) {
if (self->num_col != self->num_row) {
PyErr_SetString(PyExc_TypeError,
"Matrix.transpose(d): "
"only square matrices are supported");
return NULL;
}
if (self->row_size == 2) {
if (self->num_col == 2) {
const float t = MATRIX_ITEM(self, 1, 0);
MATRIX_ITEM(self, 1, 0) = MATRIX_ITEM(self, 0, 1);
MATRIX_ITEM(self, 0, 1) = t;
}
else if (self->row_size == 3) {
transpose_m3((float (*)[3])self->contigPtr);
else if (self->num_col == 3) {
transpose_m3((float (*)[3])self->matrix);
}
else {
transpose_m4((float (*)[4])self->contigPtr);
transpose_m4((float (*)[4])self->matrix);
}
(void)BaseMath_WriteCallback(self);
@ -1222,7 +1222,7 @@ PyDoc_STRVAR(Matrix_zero_doc,
);
static PyObject *Matrix_zero(MatrixObject *self)
{
fill_vn_fl(self->contigPtr, self->row_size * self->col_size, 0.0f);
fill_vn_fl(self->matrix, self->num_col * self->num_row, 0.0f);
if (BaseMath_WriteCallback(self) == -1)
return NULL;
@ -1245,24 +1245,24 @@ static PyObject *Matrix_identity(MatrixObject *self)
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (self->row_size != self->col_size) {
if (self->num_col != self->num_row) {
PyErr_SetString(PyExc_TypeError,
"Matrix.identity(): "
"only square matrices are supported");
return NULL;
}
if (self->row_size == 2) {
if (self->num_col == 2) {
MATRIX_ITEM(self, 0, 0) = 1.0f;
MATRIX_ITEM(self, 0, 1) = 0.0f;
MATRIX_ITEM(self, 1, 0) = 0.0f;
MATRIX_ITEM(self, 1, 1) = 1.0f;
}
else if (self->row_size == 3) {
unit_m3((float (*)[3])self->contigPtr);
else if (self->num_col == 3) {
unit_m3((float (*)[3])self->matrix);
}
else {
unit_m4((float (*)[4])self->contigPtr);
unit_m4((float (*)[4])self->matrix);
}
if (BaseMath_WriteCallback(self) == -1)
@ -1285,7 +1285,7 @@ static PyObject *Matrix_copy(MatrixObject *self)
if (BaseMath_ReadCallback(self) == -1)
return NULL;
return Matrix_CreatePyObject((float (*))self->contigPtr, self->row_size, self->col_size, Py_NEW, Py_TYPE(self));
return Matrix_CreatePyObject((float (*))self->matrix, self->num_col, self->num_row, Py_NEW, Py_TYPE(self));
}
/*----------------------------print object (internal)-------------*/
@ -1298,13 +1298,13 @@ static PyObject *Matrix_repr(MatrixObject *self)
if (BaseMath_ReadCallback(self) == -1)
return NULL;
for (x = 0; x < self->row_size; x++) {
rows[x]= PyTuple_New(self->col_size);
for (y = 0; y < self->col_size; y++) {
for (x = 0; x < self->num_col; x++) {
rows[x]= PyTuple_New(self->num_row);
for (y = 0; y < self->num_row; y++) {
PyTuple_SET_ITEM(rows[x], y, PyFloat_FromDouble(MATRIX_ITEM(self, x, y)));
}
}
switch (self->row_size) {
switch (self->num_col) {
case 2: return PyUnicode_FromFormat("Matrix((%R,\n"
" %R))", rows[0], rows[1]);
@ -1337,23 +1337,23 @@ static PyObject* Matrix_str(MatrixObject *self)
ds= BLI_dynstr_new();
/* First determine the maximum width for each column */
for (col = 0; col < self->row_size; col++) {
for (col = 0; col < self->num_col; col++) {
maxsize[col]= 0;
for (row = 0; row < self->col_size; row++) {
for (row = 0; row < self->num_row; row++) {
int size= BLI_snprintf(dummy_buf, sizeof(dummy_buf), "%.4f", MATRIX_ITEM(self, col, row));
maxsize[col]= MAX2(maxsize[col], size);
}
}
/* Now write the unicode string to be printed */
BLI_dynstr_appendf(ds, "<Matrix %dx%d (", self->col_size, self->row_size);
for (row = 0; row < self->col_size; row++) {
for (col = 0; col < self->row_size; col++) {
BLI_dynstr_appendf(ds, "<Matrix %dx%d (", self->num_row, self->num_col);
for (row = 0; row < self->num_row; row++) {
for (col = 0; col < self->num_col; col++) {
BLI_dynstr_appendf(ds, col ? ", %*.4f" : "%*.4f", maxsize[col], MATRIX_ITEM(self, col, row));
}
BLI_dynstr_append(ds, row + 1 != self->col_size ? ")\n " : ")");
BLI_dynstr_append(ds, row + 1 != self->num_row ? ")\n " : ")");
}
BLI_dynstr_append(ds, " >");
BLI_dynstr_append(ds, ">");
return mathutils_dynstr_to_py(ds); /* frees ds */
}
@ -1370,9 +1370,9 @@ static PyObject* Matrix_richcmpr(PyObject *a, PyObject *b, int op)
if (BaseMath_ReadCallback(matA) == -1 || BaseMath_ReadCallback(matB) == -1)
return NULL;
ok= ( (matA->col_size == matB->col_size) &&
(matA->row_size == matB->row_size) &&
EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr, (matA->row_size * matA->col_size), 1)
ok= ( (matA->num_row == matB->num_row) &&
(matA->num_col == matB->num_col) &&
EXPP_VectorsAreEqual(matA->matrix, matB->matrix, (matA->num_col * matA->num_row), 1)
) ? 0 : -1;
}
@ -1402,7 +1402,7 @@ static PyObject* Matrix_richcmpr(PyObject *a, PyObject *b, int op)
sequence length*/
static int Matrix_len(MatrixObject *self)
{
return (self->row_size);
return (self->num_col);
}
/*----------------------------object[]---------------------------
sequence accessor (get)
@ -1412,13 +1412,13 @@ static PyObject *Matrix_item(MatrixObject *self, int i)
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (i < 0 || i >= self->row_size) {
if (i < 0 || i >= self->num_col) {
PyErr_SetString(PyExc_IndexError,
"matrix[attribute]: "
"array index out of range");
return NULL;
}
return Vector_CreatePyObject_cb((PyObject *)self, self->col_size, mathutils_matrix_vector_cb_index, i);
return Vector_CreatePyObject_cb((PyObject *)self, self->num_row, mathutils_matrix_vector_cb_index, i);
}
/*----------------------------object[]-------------------------
sequence accessor (set) */
@ -1429,17 +1429,17 @@ static int Matrix_ass_item(MatrixObject *self, int i, PyObject *value)
if (BaseMath_ReadCallback(self) == -1)
return -1;
if (i >= self->row_size || i < 0) {
if (i >= self->num_col || i < 0) {
PyErr_SetString(PyExc_IndexError,
"matrix[attribute] = x: bad column");
return -1;
}
if (mathutils_array_parse(vec, self->col_size, self->col_size, value, "matrix[i] = value assignment") < 0) {
if (mathutils_array_parse(vec, self->num_row, self->num_row, value, "matrix[i] = value assignment") < 0) {
return -1;
}
memcpy(MATRIX_ROW_PTR(self, i), vec, self->col_size * sizeof(float));
memcpy(MATRIX_ROW_PTR(self, i), vec, self->num_row * sizeof(float));
(void)BaseMath_WriteCallback(self);
return 0;
@ -1456,14 +1456,14 @@ static PyObject *Matrix_slice(MatrixObject *self, int begin, int end)
if (BaseMath_ReadCallback(self) == -1)
return NULL;
CLAMP(begin, 0, self->row_size);
CLAMP(end, 0, self->row_size);
CLAMP(begin, 0, self->num_col);
CLAMP(end, 0, self->num_col);
begin= MIN2(begin, end);
tuple= PyTuple_New(end - begin);
for (count= begin; count < end; count++) {
PyTuple_SET_ITEM(tuple, count - begin,
Vector_CreatePyObject_cb((PyObject *)self, self->col_size, mathutils_matrix_vector_cb_index, count));
Vector_CreatePyObject_cb((PyObject *)self, self->num_row, mathutils_matrix_vector_cb_index, count));
}
@ -1478,8 +1478,8 @@ static int Matrix_ass_slice(MatrixObject *self, int begin, int end, PyObject *va
if (BaseMath_ReadCallback(self) == -1)
return -1;
CLAMP(begin, 0, self->row_size);
CLAMP(end, 0, self->row_size);
CLAMP(begin, 0, self->num_col);
CLAMP(end, 0, self->num_col);
begin = MIN2(begin, end);
/* non list/tuple cases */
@ -1505,7 +1505,7 @@ static int Matrix_ass_slice(MatrixObject *self, int begin, int end, PyObject *va
/*parse each sub sequence*/
PyObject *item= PySequence_Fast_GET_ITEM(value_fast, i);
if (mathutils_array_parse(&mat[i * self->col_size], self->col_size, self->col_size, item,
if (mathutils_array_parse(&mat[i * self->num_row], self->num_row, self->num_row, item,
"matrix[begin:end] = value assignment") < 0)
{
return -1;
@ -1515,7 +1515,7 @@ static int Matrix_ass_slice(MatrixObject *self, int begin, int end, PyObject *va
Py_DECREF(value_fast);
/*parsed well - now set in matrix*/
memcpy(self->contigPtr + (begin * self->col_size), mat, sizeof(float) * (size * self->col_size));
memcpy(self->matrix + (begin * self->num_row), mat, sizeof(float) * (size * self->num_row));
(void)BaseMath_WriteCallback(self);
return 0;
@ -1542,16 +1542,16 @@ static PyObject *Matrix_add(PyObject *m1, PyObject *m2)
if (BaseMath_ReadCallback(mat1) == -1 || BaseMath_ReadCallback(mat2) == -1)
return NULL;
if (mat1->row_size != mat2->row_size || mat1->col_size != mat2->col_size) {
if (mat1->num_col != mat2->num_col || mat1->num_row != mat2->num_row) {
PyErr_SetString(PyExc_TypeError,
"Matrix addition: "
"matrices must have the same dimensions for this operation");
return NULL;
}
add_vn_vnvn(mat, mat1->contigPtr, mat2->contigPtr, mat1->row_size * mat1->col_size);
add_vn_vnvn(mat, mat1->matrix, mat2->matrix, mat1->num_col * mat1->num_row);
return Matrix_CreatePyObject(mat, mat1->row_size, mat1->col_size, Py_NEW, Py_TYPE(mat1));
return Matrix_CreatePyObject(mat, mat1->num_col, mat1->num_row, Py_NEW, Py_TYPE(mat1));
}
/*------------------------obj - obj------------------------------
subtraction*/
@ -1575,24 +1575,24 @@ static PyObject *Matrix_sub(PyObject *m1, PyObject *m2)
if (BaseMath_ReadCallback(mat1) == -1 || BaseMath_ReadCallback(mat2) == -1)
return NULL;
if (mat1->row_size != mat2->row_size || mat1->col_size != mat2->col_size) {
if (mat1->num_col != mat2->num_col || mat1->num_row != mat2->num_row) {
PyErr_SetString(PyExc_TypeError,
"Matrix addition: "
"matrices must have the same dimensions for this operation");
return NULL;
}
sub_vn_vnvn(mat, mat1->contigPtr, mat2->contigPtr, mat1->row_size * mat1->col_size);
sub_vn_vnvn(mat, mat1->matrix, mat2->matrix, mat1->num_col * mat1->num_row);
return Matrix_CreatePyObject(mat, mat1->row_size, mat1->col_size, Py_NEW, Py_TYPE(mat1));
return Matrix_CreatePyObject(mat, mat1->num_col, mat1->num_row, Py_NEW, Py_TYPE(mat1));
}
/*------------------------obj * obj------------------------------
mulplication*/
static PyObject *matrix_mul_float(MatrixObject *mat, const float scalar)
{
float tmat[16];
mul_vn_vn_fl(tmat, mat->contigPtr, mat->row_size * mat->col_size, scalar);
return Matrix_CreatePyObject(tmat, mat->row_size, mat->col_size, Py_NEW, Py_TYPE(mat));
mul_vn_vn_fl(tmat, mat->matrix, mat->num_col * mat->num_row, scalar);
return Matrix_CreatePyObject(tmat, mat->num_col, mat->num_row, Py_NEW, Py_TYPE(mat));
}
static PyObject *Matrix_mul(PyObject *m1, PyObject *m2)
@ -1621,17 +1621,17 @@ static PyObject *Matrix_mul(PyObject *m1, PyObject *m2)
double dot = 0.0f;
int x, y, z;
for (x = 0; x < mat2->row_size; x++) {
for (y = 0; y < mat1->col_size; y++) {
for (z = 0; z < mat1->row_size; z++) {
for (x = 0; x < mat2->num_col; x++) {
for (y = 0; y < mat1->num_row; y++) {
for (z = 0; z < mat1->num_col; z++) {
dot += MATRIX_ITEM(mat1, z, y) * MATRIX_ITEM(mat2, x, z);
}
mat[((x * mat1->col_size) + y)] = (float)dot;
mat[((x * mat1->num_row) + y)] = (float)dot;
dot = 0.0f;
}
}
return Matrix_CreatePyObject(mat, mat2->row_size, mat1->col_size, Py_NEW, Py_TYPE(mat1));
return Matrix_CreatePyObject(mat, mat2->num_col, mat1->num_row, Py_NEW, Py_TYPE(mat1));
}
else if (mat2) {
/*FLOAT/INT * MATRIX */
@ -1698,13 +1698,13 @@ static PyObject *Matrix_subscript(MatrixObject* self, PyObject* item)
if (i == -1 && PyErr_Occurred())
return NULL;
if (i < 0)
i += self->row_size;
i += self->num_col;
return Matrix_item(self, i);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((void *)item, self->row_size, &start, &stop, &step, &slicelength) < 0)
if (PySlice_GetIndicesEx((void *)item, self->num_col, &start, &stop, &step, &slicelength) < 0)
return NULL;
if (slicelength <= 0) {
@ -1734,13 +1734,13 @@ static int Matrix_ass_subscript(MatrixObject* self, PyObject* item, PyObject* va
if (i == -1 && PyErr_Occurred())
return -1;
if (i < 0)
i += self->row_size;
i += self->num_col;
return Matrix_ass_item(self, i, value);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((void *)item, self->row_size, &start, &stop, &step, &slicelength) < 0)
if (PySlice_GetIndicesEx((void *)item, self->num_col, &start, &stop, &step, &slicelength) < 0)
return -1;
if (step == 1)
@ -1805,12 +1805,12 @@ static PyNumberMethods Matrix_NumMethods = {
static PyObject *Matrix_getRowSize(MatrixObject *self, void *UNUSED(closure))
{
return PyLong_FromLong((long) self->row_size);
return PyLong_FromLong((long) self->num_col);
}
static PyObject *Matrix_getColSize(MatrixObject *self, void *UNUSED(closure))
{
return PyLong_FromLong((long) self->col_size);
return PyLong_FromLong((long) self->num_row);
}
static PyObject *Matrix_median_scale_get(MatrixObject *self, void *UNUSED(closure))
@ -1821,7 +1821,7 @@ static PyObject *Matrix_median_scale_get(MatrixObject *self, void *UNUSED(closur
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if ((self->col_size < 3) || (self->row_size < 3)) {
if ((self->num_row < 3) || (self->num_col < 3)) {
PyErr_SetString(PyExc_AttributeError,
"Matrix.median_scale: "
"inappropriate matrix size, 3x3 minimum");
@ -1839,10 +1839,10 @@ static PyObject *Matrix_is_negative_get(MatrixObject *self, void *UNUSED(closure
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if (self->col_size == 4 && self->row_size == 4)
return PyBool_FromLong(is_negative_m4((float (*)[4])self->contigPtr));
else if (self->col_size == 3 && self->row_size == 3)
return PyBool_FromLong(is_negative_m3((float (*)[3])self->contigPtr));
if (self->num_row == 4 && self->num_col == 4)
return PyBool_FromLong(is_negative_m4((float (*)[4])self->matrix));
else if (self->num_row == 3 && self->num_col == 3)
return PyBool_FromLong(is_negative_m3((float (*)[3])self->matrix));
else {
PyErr_SetString(PyExc_AttributeError,
"Matrix.is_negative: "
@ -1857,10 +1857,10 @@ static PyObject *Matrix_is_orthogonal_get(MatrixObject *self, void *UNUSED(closu
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if (self->col_size == 4 && self->row_size == 4)
return PyBool_FromLong(is_orthogonal_m4((float (*)[4])self->contigPtr));
else if (self->col_size == 3 && self->row_size == 3)
return PyBool_FromLong(is_orthogonal_m3((float (*)[3])self->contigPtr));
if (self->num_row == 4 && self->num_col == 4)
return PyBool_FromLong(is_orthogonal_m4((float (*)[4])self->matrix));
else if (self->num_row == 3 && self->num_col == 3)
return PyBool_FromLong(is_orthogonal_m3((float (*)[3])self->matrix));
else {
PyErr_SetString(PyExc_AttributeError,
"Matrix.is_orthogonal: "
@ -1982,37 +1982,37 @@ PyTypeObject matrix_Type = {
* pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
* (i.e. it must be created here with PyMEM_malloc()) */
PyObject *Matrix_CreatePyObject(float *mat,
const unsigned short row_size, const unsigned short col_size,
const unsigned short num_col, const unsigned short num_row,
int type, PyTypeObject *base_type)
{
MatrixObject *self;
/* matrix objects can be any 2-4row x 2-4col matrix */
if (row_size < 2 || row_size > 4 || col_size < 2 || col_size > 4) {
if (num_col < 2 || num_col > 4 || num_row < 2 || num_row > 4) {
PyErr_SetString(PyExc_RuntimeError,
"Matrix(): "
"row and column sizes must be between 2 and 4");
return NULL;
}
self= base_type ? (MatrixObject *)base_type->tp_alloc(base_type, 0) :
(MatrixObject *)PyObject_GC_New(MatrixObject, &matrix_Type);
self= base_type ? (MatrixObject *)base_type->tp_alloc(base_type, 0) :
(MatrixObject *)PyObject_GC_New(MatrixObject, &matrix_Type);
if (self) {
self->row_size = row_size;
self->col_size = col_size;
self->num_col = num_col;
self->num_row = num_row;
/* init callbacks as NULL */
self->cb_user= NULL;
self->cb_type= self->cb_subtype= 0;
if (type == Py_WRAP) {
self->contigPtr = mat;
self->matrix = mat;
self->wrapped = Py_WRAP;
}
else if (type == Py_NEW) {
self->contigPtr = PyMem_Malloc(row_size * col_size * sizeof(float));
if (self->contigPtr == NULL) { /*allocation failure*/
self->matrix = PyMem_Malloc(num_col * num_row * sizeof(float));
if (self->matrix == NULL) { /*allocation failure*/
PyErr_SetString(PyExc_MemoryError,
"Matrix(): "
"problem allocating pointer space");
@ -2020,16 +2020,16 @@ PyObject *Matrix_CreatePyObject(float *mat,
}
if (mat) { /*if a float array passed*/
memcpy(self->contigPtr, mat, row_size * col_size * sizeof(float));
memcpy(self->matrix, mat, num_col * num_row * sizeof(float));
}
else if (row_size == col_size) {
else if (num_col == num_row) {
/* or if no arguments are passed return identity matrix for square matrices */
PyObject *ret_dummy= Matrix_identity(self);
Py_DECREF(ret_dummy);
}
else {
/* otherwise zero everything */
memset(self->contigPtr, 0, row_size * col_size * sizeof(float));
memset(self->matrix, 0, num_col * num_row * sizeof(float));
}
self->wrapped = Py_NEW;
}

@ -41,22 +41,22 @@ extern PyTypeObject matrix_Type;
/* matrix[row][col] == MATRIX_ITEM_INDEX(matrix, row, col) */
#ifdef DEBUG
# define MATRIX_ITEM_ASSERT(_mat, _row, _col) (BLI_assert(_row < (_mat)->row_size && _col < (_mat)->col_size))
# define MATRIX_ITEM_ASSERT(_mat, _row, _col) (BLI_assert(_row < (_mat)->num_col && _col < (_mat)->num_row))
#else
# define MATRIX_ITEM_ASSERT(_mat, _row, _col) (void)0
#endif
#define MATRIX_ITEM_INDEX(_mat, _row, _col) (MATRIX_ITEM_ASSERT(_mat, _row, _col),(((_mat)->col_size * (_row)) + (_col)))
#define MATRIX_ITEM_PTR( _mat, _row, _col) ((_mat)->contigPtr + MATRIX_ITEM_INDEX(_mat, _row, _col))
#define MATRIX_ITEM( _mat, _row, _col) ((_mat)->contigPtr [MATRIX_ITEM_INDEX(_mat, _row, _col)])
#define MATRIX_ITEM_INDEX(_mat, _row, _col) (MATRIX_ITEM_ASSERT(_mat, _row, _col),(((_mat)->num_row * (_row)) + (_col)))
#define MATRIX_ITEM_PTR( _mat, _row, _col) ((_mat)->matrix + MATRIX_ITEM_INDEX(_mat, _row, _col))
#define MATRIX_ITEM( _mat, _row, _col) ((_mat)->matrix [MATRIX_ITEM_INDEX(_mat, _row, _col)])
#define MATRIX_ROW_INDEX(_mat, _row) (MATRIX_ITEM_INDEX(_mat, _row, 0))
#define MATRIX_ROW_PTR( _mat, _row) ((_mat)->contigPtr + MATRIX_ROW_INDEX(_mat, _row))
#define MATRIX_ROW_PTR( _mat, _row) ((_mat)->matrix + MATRIX_ROW_INDEX(_mat, _row))
typedef struct {
BASE_MATH_MEMBERS(contigPtr);
unsigned short row_size;
unsigned short col_size;
BASE_MATH_MEMBERS(matrix);
unsigned short num_col;
unsigned short num_row;
} MatrixObject;
/* struct data contains a pointer to the actual data that the
@ -66,9 +66,9 @@ typedef struct {
/* prototypes */
PyObject *Matrix_CreatePyObject(float *mat,
const unsigned short row_size, const unsigned short col_size,
const unsigned short num_col, const unsigned short num_row,
int type, PyTypeObject *base_type);
PyObject *Matrix_CreatePyObject_cb(PyObject *user, int row_size, int col_size, int cb_type, int cb_subtype);
PyObject *Matrix_CreatePyObject_cb(PyObject *user, int num_col, int num_row, int cb_type, int cb_subtype);
extern int mathutils_matrix_vector_cb_index;
extern struct Mathutils_Callback mathutils_matrix_vector_cb;

@ -503,7 +503,7 @@ static PyObject *Quaternion_str(QuaternionObject *self)
ds= BLI_dynstr_new();
BLI_dynstr_appendf(ds, "<Quaternion (w=%.4f, x=%.4f, y=%.4f, z=%.4f) >",
BLI_dynstr_appendf(ds, "<Quaternion (w=%.4f, x=%.4f, y=%.4f, z=%.4f)>",
self->quat[0], self->quat[1], self->quat[2], self->quat[3]);
return mathutils_dynstr_to_py(ds); /* frees ds */

@ -1189,7 +1189,7 @@ static PyObject *Vector_str(VectorObject *self)
BLI_dynstr_appendf(ds, i ? ", %.4f" : "%.4f", self->vec[i]);
}
BLI_dynstr_append(ds, ") >");
BLI_dynstr_append(ds, ")>");
return mathutils_dynstr_to_py(ds); /* frees ds */
}
@ -1492,8 +1492,8 @@ int column_vector_multiplication(float rvec[MAX_DIMENSIONS], VectorObject* vec,
double dot = 0.0f;
int x, y, z = 0;
if (mat->row_size != vec->size) {
if (mat->row_size == 4 && vec->size == 3) {
if (mat->num_col != vec->size) {
if (mat->num_col == 4 && vec->size == 3) {
vec_cpy[3] = 1.0f;
}
else {
@ -1509,8 +1509,8 @@ int column_vector_multiplication(float rvec[MAX_DIMENSIONS], VectorObject* vec,
rvec[3] = 1.0f;
for (x = 0; x < mat->col_size; x++) {
for (y = 0; y < mat->row_size; y++) {
for (x = 0; x < mat->num_row; x++) {
for (y = 0; y < mat->num_col; y++) {
dot += (double)(MATRIX_ITEM(mat, y, x) * vec_cpy[y]);
}
rvec[z++] = (float)dot;
@ -2613,8 +2613,8 @@ static int row_vector_multiplication(float rvec[MAX_DIMENSIONS], VectorObject *v
double dot = 0.0f;
int x, y, z= 0, vec_size= vec->size;
if (mat->col_size != vec_size) {
if (mat->col_size == 4 && vec_size != 3) {
if (mat->num_row != vec_size) {
if (mat->num_row == 4 && vec_size != 3) {
PyErr_SetString(PyExc_ValueError,
"vector * matrix: matrix column size "
"and the vector size must be the same");
@ -2632,8 +2632,8 @@ static int row_vector_multiplication(float rvec[MAX_DIMENSIONS], VectorObject *v
rvec[3] = 1.0f;
//muliplication
for (x = 0; x < mat->row_size; x++) {
for (y = 0; y < mat->col_size; y++) {
for (x = 0; x < mat->num_col; x++) {
for (y = 0; y < mat->num_row; y++) {
dot += MATRIX_ITEM(mat, x, y) * vec_cpy[y];
}
rvec[z++] = (float)dot;