Code refactor: avoid motion transform copy, remove unused curved code.

The purpose of the previous code refactoring is to make the code more readable,
but combined with this change benchmarks also render about 2-3% faster with an
NVIDIA Titan Xp.
This commit is contained in:
Brecht Van Lommel 2018-03-07 23:52:26 +01:00
parent f3010e98c3
commit cd15d87bfc
3 changed files with 44 additions and 61 deletions

@ -96,10 +96,10 @@ ccl_device_inline Transform object_fetch_vector_transform(KernelGlobals *kg, int
#ifdef __OBJECT_MOTION__
ccl_device_inline Transform object_fetch_transform_motion(KernelGlobals *kg, int object, float time)
{
MotionTransform motion = kernel_tex_fetch(__objects, object).tfm;
const ccl_global MotionTransform *motion = &kernel_tex_fetch(__objects, object).tfm;
Transform tfm;
transform_motion_interpolate(&tfm, &motion, time);
transform_motion_interpolate(&tfm, motion, time);
return tfm;
}

@ -92,16 +92,10 @@ ccl_device void camera_sample_perspective(KernelGlobals *kg, float raster_x, flo
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_motion) {
# ifdef __KERNEL_OPENCL__
const MotionTransform tfm = kernel_data.cam.motion;
transform_motion_interpolate(&cameratoworld,
&tfm,
ray->time);
# else
transform_motion_interpolate(&cameratoworld,
&kernel_data.cam.motion,
ray->time);
# endif
ccl_constant MotionTransform *motion = &kernel_data.cam.motion;
transform_motion_interpolate_constant(&cameratoworld,
motion,
ray->time);
}
#endif
@ -204,16 +198,10 @@ ccl_device void camera_sample_orthographic(KernelGlobals *kg, float raster_x, fl
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_motion) {
# ifdef __KERNEL_OPENCL__
const MotionTransform tfm = kernel_data.cam.motion;
transform_motion_interpolate(&cameratoworld,
&tfm,
ray->time);
# else
transform_motion_interpolate(&cameratoworld,
&kernel_data.cam.motion,
ray->time);
# endif
ccl_constant MotionTransform *motion = &kernel_data.cam.motion;
transform_motion_interpolate_constant(&cameratoworld,
motion,
ray->time);
}
#endif
@ -282,16 +270,10 @@ ccl_device_inline void camera_sample_panorama(ccl_constant KernelCamera *cam,
#ifdef __CAMERA_MOTION__
if(cam->have_motion) {
# ifdef __KERNEL_OPENCL__
const MotionTransform tfm = cam->motion;
transform_motion_interpolate(&cameratoworld,
&tfm,
ray->time);
# else
transform_motion_interpolate(&cameratoworld,
&cam->motion,
ray->time);
# endif
ccl_constant MotionTransform *motion = &cam->motion;
transform_motion_interpolate_constant(&cameratoworld,
motion,
ray->time);
}
#endif

@ -455,40 +455,16 @@ ccl_device_inline void transform_compose(Transform *tfm, const Transform *decomp
tfm->w = make_float4(0.0f, 0.0f, 0.0f, 1.0f);
}
/* Disabled for now, need arc-length parametrization for constant speed motion.
* #define CURVED_MOTION_INTERPOLATE */
ccl_device void transform_motion_interpolate(Transform *tfm, const MotionTransform *motion, float t)
ccl_device void transform_motion_interpolate(Transform *tfm, const ccl_global MotionTransform *motion, float t)
{
/* possible optimization: is it worth it adding a check to skip scaling?
* it's probably quite uncommon to have scaling objects. or can we skip
* just shearing perhaps? */
Transform decomp;
#ifdef CURVED_MOTION_INTERPOLATE
/* 3 point bezier curve interpolation for position */
float3 Ppre = float4_to_float3(motion->pre.y);
float3 Pmid = float4_to_float3(motion->mid.y);
float3 Ppost = float4_to_float3(motion->post.y);
float3 Pcontrol = 2.0f*Pmid - 0.5f*(Ppre + Ppost);
float3 P = Ppre*t*t + Pcontrol*2.0f*t*(1.0f - t) + Ppost*(1.0f - t)*(1.0f - t);
decomp.y.x = P.x;
decomp.y.y = P.y;
decomp.y.z = P.z;
#endif
/* linear interpolation for rotation and scale */
if(t < 0.5f) {
t *= 2.0f;
decomp.x = quat_interpolate(motion->pre.x, motion->mid.x, t);
#ifdef CURVED_MOTION_INTERPOLATE
decomp.y.w = (1.0f - t)*motion->pre.y.w + t*motion->mid.y.w;
#else
decomp.y = (1.0f - t)*motion->pre.y + t*motion->mid.y;
#endif
decomp.z = (1.0f - t)*motion->pre.z + t*motion->mid.z;
decomp.w = (1.0f - t)*motion->pre.w + t*motion->mid.w;
}
@ -496,11 +472,36 @@ ccl_device void transform_motion_interpolate(Transform *tfm, const MotionTransfo
t = (t - 0.5f)*2.0f;
decomp.x = quat_interpolate(motion->mid.x, motion->post.x, t);
#ifdef CURVED_MOTION_INTERPOLATE
decomp.y.w = (1.0f - t)*motion->mid.y.w + t*motion->post.y.w;
#else
decomp.y = (1.0f - t)*motion->mid.y + t*motion->post.y;
#endif
decomp.z = (1.0f - t)*motion->mid.z + t*motion->post.z;
decomp.w = (1.0f - t)*motion->mid.w + t*motion->post.w;
}
/* compose rotation, translation, scale into matrix */
transform_compose(tfm, &decomp);
}
ccl_device void transform_motion_interpolate_constant(Transform *tfm, ccl_constant MotionTransform *motion, float t)
{
/* possible optimization: is it worth it adding a check to skip scaling?
* it's probably quite uncommon to have scaling objects. or can we skip
* just shearing perhaps? */
Transform decomp;
/* linear interpolation for rotation and scale */
if(t < 0.5f) {
t *= 2.0f;
decomp.x = quat_interpolate(motion->pre.x, motion->mid.x, t);
decomp.y = (1.0f - t)*motion->pre.y + t*motion->mid.y;
decomp.z = (1.0f - t)*motion->pre.z + t*motion->mid.z;
decomp.w = (1.0f - t)*motion->pre.w + t*motion->mid.w;
}
else {
t = (t - 0.5f)*2.0f;
decomp.x = quat_interpolate(motion->mid.x, motion->post.x, t);
decomp.y = (1.0f - t)*motion->mid.y + t*motion->post.y;
decomp.z = (1.0f - t)*motion->mid.z + t*motion->post.z;
decomp.w = (1.0f - t)*motion->mid.w + t*motion->post.w;
}