code cleanup: define sizes of vectors for function args and use C style comments

This commit is contained in:
Campbell Barton 2012-10-15 09:11:17 +00:00
parent abff7cac7e
commit da9394f596
23 changed files with 223 additions and 217 deletions

@ -99,7 +99,7 @@ void BKE_pose_where_is_bone_tail(struct bPoseChannel *pchan);
/* get_objectspace_bone_matrix has to be removed still */
void get_objectspace_bone_matrix(struct Bone *bone, float M_accumulatedMatrix[][4], int root, int posed);
void vec_roll_to_mat3(const float vec[3], const float roll, float mat[][3]);
void mat3_to_vec_roll(float mat[][3], float *vec, float *roll);
void mat3_to_vec_roll(float mat[][3], float r_vec[3], float *r_roll);
/* Common Conversions Between Co-ordinate Spaces */
void BKE_armature_mat_world_to_pose(struct Object *ob, float inmat[][4], float outmat[][4]);

@ -108,7 +108,7 @@ void BKE_nurb_free(struct Nurb *nu);
struct Nurb *BKE_nurb_duplicate(struct Nurb *nu);
void BKE_nurb_test2D(struct Nurb *nu);
void BKE_nurb_minmax(struct Nurb *nu, float *min, float *max);
void BKE_nurb_minmax(struct Nurb *nu, float min[3], float max[3]);
void BKE_nurb_makeFaces(struct Nurb *nu, float *coord_array, int rowstride, int resolu, int resolv);
void BKE_nurb_makeCurve(struct Nurb *nu, float *coord_array, float *tilt_array, float *radius_array, float *weight_array, int resolu, int stride);

@ -46,7 +46,7 @@ struct Lattice *BKE_lattice_add(const char *name);
struct Lattice *BKE_lattice_copy(struct Lattice *lt);
void BKE_lattice_free(struct Lattice *lt);
void BKE_lattice_make_local(struct Lattice *lt);
void calc_lat_fudu(int flag, int res, float *fu, float *du);
void calc_lat_fudu(int flag, int res, float *r_fu, float *r_du);
void init_latt_deform(struct Object *oblatt, struct Object *ob);
void calc_latt_deform(struct Object *, float co[3], float weight);

@ -130,7 +130,7 @@ struct Mesh *BKE_mesh_copy(struct Mesh *me);
void mesh_update_customdata_pointers(struct Mesh *me, const short do_ensure_tess_cd);
void BKE_mesh_make_local(struct Mesh *me);
void BKE_mesh_boundbox_calc(struct Mesh *me, float *loc, float *size);
void BKE_mesh_boundbox_calc(struct Mesh *me, float r_loc[3], float r_size[3]);
void BKE_mesh_texspace_calc(struct Mesh *me);
float *BKE_mesh_orco_verts_get(struct Object *ob);
void BKE_mesh_orco_verts_transform(struct Mesh *me, float (*orco)[3], int totvert, int invert);

@ -1425,19 +1425,20 @@ void BKE_rotMode_change_values(float quat[4], float eul[3], float axis[3], float
* *************************************************************************** */
/* Computes vector and roll based on a rotation.
* "mat" must contain only a rotation, and no scaling. */
void mat3_to_vec_roll(float mat[][3], float vec[3], float *roll)
void mat3_to_vec_roll(float mat[][3], float r_vec[3], float *r_roll)
{
if (vec)
copy_v3_v3(vec, mat[1]);
if (r_vec) {
copy_v3_v3(r_vec, mat[1]);
}
if (roll) {
if (r_roll) {
float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];
vec_roll_to_mat3(mat[1], 0.0f, vecmat);
invert_m3_m3(vecmatinv, vecmat);
mul_m3_m3m3(rollmat, vecmatinv, mat);
*roll = (float)atan2(rollmat[2][0], rollmat[2][2]);
*r_roll = atan2f(rollmat[2][0], rollmat[2][2]);
}
}

@ -64,19 +64,19 @@
#include "BKE_deform.h"
void calc_lat_fudu(int flag, int res, float *fu, float *du)
void calc_lat_fudu(int flag, int res, float *r_fu, float *r_du)
{
if (res == 1) {
*fu = 0.0;
*du = 0.0;
*r_fu = 0.0;
*r_du = 0.0;
}
else if (flag & LT_GRID) {
*fu = -0.5f * (res - 1);
*du = 1.0f;
*r_fu = -0.5f * (res - 1);
*r_du = 1.0f;
}
else {
*fu = -1.0f;
*du = 2.0f / (res - 1);
*r_fu = -1.0f;
*r_du = 2.0f / (res - 1);
}
}

@ -44,36 +44,36 @@
#include "recast-capi.h"
BLI_INLINE float area2(const float* a, const float* b, const float* c)
BLI_INLINE float area2(const float *a, const float *b, const float *c)
{
return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
}
BLI_INLINE int left(const float* a, const float* b, const float* c)
BLI_INLINE int left(const float *a, const float *b, const float *c)
{
return area2(a, b, c) < 0;
}
int polyNumVerts(const unsigned short* p, const int vertsPerPoly)
int polyNumVerts(const unsigned short *p, const int vertsPerPoly)
{
int i, nv = 0;
for (i=0; i<vertsPerPoly; i++) {
if (p[i]==0xffff)
for (i = 0; i < vertsPerPoly; i++) {
if (p[i] == 0xffff)
break;
nv++;
}
return nv;
}
int polyIsConvex(const unsigned short* p, const int vertsPerPoly, const float* verts)
int polyIsConvex(const unsigned short *p, const int vertsPerPoly, const float *verts)
{
int j, nv = polyNumVerts(p, vertsPerPoly);
if (nv<3)
if (nv < 3)
return 0;
for (j=0; j<nv; j++) {
const float* v = &verts[3*p[j]];
const float* v_next = &verts[3*p[(j+1)%nv]];
const float* v_prev = &verts[3*p[(nv+j-1)%nv]];
for (j = 0; j < nv; j++) {
const float *v = &verts[3 * p[j]];
const float *v_next = &verts[3 * p[(j + 1) % nv]];
const float *v_prev = &verts[3 * p[(nv + j - 1) % nv]];
if (!left(v_prev, v, v_next))
return 0;
@ -81,7 +81,8 @@ int polyIsConvex(const unsigned short* p, const int vertsPerPoly, const float* v
return 1;
}
float distPointToSegmentSq(const float* point, const float* a, const float* b)
/* XXX, could replace with #dist_to_line_segment_v3(), or add a squared version */
float distPointToSegmentSq(const float point[3], const float a[3], const float b[3])
{
float abx[3], dx[3];
float d, t;
@ -89,24 +90,24 @@ float distPointToSegmentSq(const float* point, const float* a, const float* b)
sub_v3_v3v3(abx, b, a);
sub_v3_v3v3(dx, point, a);
d = abx[0]*abx[0]+abx[2]*abx[2];
t = abx[0]*dx[0]+abx[2]*dx[2];
d = abx[0] * abx[0] + abx[2] * abx[2];
t = abx[0] * dx[0] + abx[2] * dx[2];
if (d > 0)
if (d > 0.0f)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx[0] = a[0] + t*abx[0] - point[0];
dx[2] = a[2] + t*abx[2] - point[2];
if (t < 0.0f)
t = 0.0f;
else if (t > 1.0f)
t = 1.0f;
dx[0] = a[0] + t * abx[0] - point[0];
dx[2] = a[2] + t * abx[2] - point[2];
return dx[0]*dx[0] + dx[2]*dx[2];
return dx[0] * dx[0] + dx[2] * dx[2];
}
int buildRawVertIndicesData(DerivedMesh* dm, int *nverts_r, float **verts_r,
int *ntris_r, unsigned short **tris_r, int **trisToFacesMap_r,
int **recastData)
int buildRawVertIndicesData(DerivedMesh *dm, int *nverts_r, float **verts_r,
int *ntris_r, unsigned short **tris_r, int **trisToFacesMap_r,
int **recastData)
{
int vi, fi, triIdx;
int nverts, ntris;
@ -117,49 +118,49 @@ int buildRawVertIndicesData(DerivedMesh* dm, int *nverts_r, float **verts_r,
MFace *faces;
nverts = dm->getNumVerts(dm);
if (nverts>=0xffff) {
if (nverts >= 0xffff) {
printf("Converting navmesh: Error! Too many vertices. Max number of vertices %d\n", 0xffff);
return 0;
}
verts = MEM_callocN(sizeof(float)*3*nverts, "buildRawVertIndicesData verts");
verts = MEM_callocN(sizeof(float) * 3 * nverts, "buildRawVertIndicesData verts");
dm->getVertCos(dm, (float(*)[3])verts);
//flip coordinates
for (vi=0; vi<nverts; vi++) {
SWAP(float, verts[3*vi+1], verts[3*vi+2]);
/* flip coordinates */
for (vi = 0; vi < nverts; vi++) {
SWAP(float, verts[3 * vi + 1], verts[3 * vi + 2]);
}
//calculate number of tris
/* calculate number of tris */
nfaces = dm->getNumTessFaces(dm);
faces = dm->getTessFaceArray(dm);
ntris = nfaces;
for (fi=0; fi<nfaces; fi++) {
MFace* face = &faces[fi];
for (fi = 0; fi < nfaces; fi++) {
MFace *face = &faces[fi];
if (face->v4)
ntris++;
}
//copy and transform to triangles (reorder on the run)
trisToFacesMap = MEM_callocN(sizeof(int)*ntris, "buildRawVertIndicesData trisToFacesMap");
tris = MEM_callocN(sizeof(unsigned short)*3*ntris, "buildRawVertIndicesData tris");
/* copy and transform to triangles (reorder on the run) */
trisToFacesMap = MEM_callocN(sizeof(int) * ntris, "buildRawVertIndicesData trisToFacesMap");
tris = MEM_callocN(sizeof(unsigned short) * 3 * ntris, "buildRawVertIndicesData tris");
tri = tris;
triIdx = 0;
for (fi=0; fi<nfaces; fi++) {
MFace* face = &faces[fi];
tri[3*triIdx+0] = (unsigned short) face->v1;
tri[3*triIdx+1] = (unsigned short) face->v3;
tri[3*triIdx+2] = (unsigned short) face->v2;
trisToFacesMap[triIdx++]=fi;
for (fi = 0; fi < nfaces; fi++) {
MFace *face = &faces[fi];
tri[3 * triIdx + 0] = (unsigned short) face->v1;
tri[3 * triIdx + 1] = (unsigned short) face->v3;
tri[3 * triIdx + 2] = (unsigned short) face->v2;
trisToFacesMap[triIdx++] = fi;
if (face->v4) {
tri[3*triIdx+0] = (unsigned short) face->v1;
tri[3*triIdx+1] = (unsigned short) face->v4;
tri[3*triIdx+2] = (unsigned short) face->v3;
trisToFacesMap[triIdx++]=fi;
tri[3 * triIdx + 0] = (unsigned short) face->v1;
tri[3 * triIdx + 1] = (unsigned short) face->v4;
tri[3 * triIdx + 2] = (unsigned short) face->v3;
trisToFacesMap[triIdx++] = fi;
}
}
//carefully, recast data is just reference to data in derived mesh
*recastData = (int*)CustomData_get_layer(&dm->polyData, CD_RECAST);
/* carefully, recast data is just reference to data in derived mesh */
*recastData = (int *)CustomData_get_layer(&dm->polyData, CD_RECAST);
*nverts_r = nverts;
*verts_r = verts;
@ -170,122 +171,122 @@ int buildRawVertIndicesData(DerivedMesh* dm, int *nverts_r, float **verts_r,
return 1;
}
int buildPolygonsByDetailedMeshes(const int vertsPerPoly, const int npolys,
unsigned short* polys, const unsigned short* dmeshes,
const float* verts, const unsigned short* dtris,
const int* dtrisToPolysMap)
int buildPolygonsByDetailedMeshes(const int vertsPerPoly, const int npolys,
unsigned short *polys, const unsigned short *dmeshes,
const float *verts, const unsigned short *dtris,
const int *dtrisToPolysMap)
{
int polyidx;
int capacity = vertsPerPoly;
unsigned short* newPoly = MEM_callocN(sizeof(unsigned short)*capacity, "buildPolygonsByDetailedMeshes newPoly");
memset(newPoly, 0xff, sizeof(unsigned short)*capacity);
unsigned short *newPoly = MEM_callocN(sizeof(unsigned short) * capacity, "buildPolygonsByDetailedMeshes newPoly");
memset(newPoly, 0xff, sizeof(unsigned short) * capacity);
for (polyidx=0; polyidx<npolys; polyidx++) {
for (polyidx = 0; polyidx < npolys; polyidx++) {
size_t i;
int j, k;
int nv = 0;
//search border
/* search border */
int tri, btri = -1;
int edge, bedge = -1;
int dtrisNum = dmeshes[polyidx*4+3];
int dtrisBase = dmeshes[polyidx*4+2];
unsigned char *traversedTris = MEM_callocN(sizeof(unsigned char)*dtrisNum, "buildPolygonsByDetailedMeshes traversedTris");
unsigned short* adjustedPoly;
int dtrisNum = dmeshes[polyidx * 4 + 3];
int dtrisBase = dmeshes[polyidx * 4 + 2];
unsigned char *traversedTris = MEM_callocN(sizeof(unsigned char) * dtrisNum, "buildPolygonsByDetailedMeshes traversedTris");
unsigned short *adjustedPoly;
int adjustedNv;
int allBorderTraversed;
for (j=0; j<dtrisNum && btri==-1;j++) {
int curpolytri = dtrisBase+j;
for (k=0; k<3; k++) {
unsigned short neighbortri = dtris[curpolytri*3*2+3+k];
if ( neighbortri==0xffff || dtrisToPolysMap[neighbortri]!=polyidx+1) {
for (j = 0; j < dtrisNum && btri == -1; j++) {
int curpolytri = dtrisBase + j;
for (k = 0; k < 3; k++) {
unsigned short neighbortri = dtris[curpolytri * 3 * 2 + 3 + k];
if (neighbortri == 0xffff || dtrisToPolysMap[neighbortri] != polyidx + 1) {
btri = curpolytri;
bedge = k;
break;
}
}
}
}
if (btri==-1 || bedge==-1) {
//can't find triangle with border edge
if (btri == -1 || bedge == -1) {
/* can't find triangle with border edge */
MEM_freeN(traversedTris);
MEM_freeN(newPoly);
return 0;
}
newPoly[nv++] = dtris[btri*3*2+bedge];
newPoly[nv++] = dtris[btri * 3 * 2 + bedge];
tri = btri;
edge = (bedge+1)%3;
traversedTris[tri-dtrisBase] = 1;
edge = (bedge + 1) % 3;
traversedTris[tri - dtrisBase] = 1;
while (tri != btri || edge != bedge) {
int neighbortri = dtris[tri*3*2+3+edge];
if (neighbortri==0xffff || dtrisToPolysMap[neighbortri]!=polyidx+1) {
if (nv==capacity) {
unsigned short* newPolyBig;
int neighbortri = dtris[tri * 3 * 2 + 3 + edge];
if (neighbortri == 0xffff || dtrisToPolysMap[neighbortri] != polyidx + 1) {
if (nv == capacity) {
unsigned short *newPolyBig;
capacity += vertsPerPoly;
newPolyBig = MEM_callocN(sizeof(unsigned short)*capacity, "buildPolygonsByDetailedMeshes newPolyBig");
memset(newPolyBig, 0xff, sizeof(unsigned short)*capacity);
memcpy(newPolyBig, newPoly, sizeof(unsigned short)*nv);
newPolyBig = MEM_callocN(sizeof(unsigned short) * capacity, "buildPolygonsByDetailedMeshes newPolyBig");
memset(newPolyBig, 0xff, sizeof(unsigned short) * capacity);
memcpy(newPolyBig, newPoly, sizeof(unsigned short) * nv);
MEM_freeN(newPoly);
newPoly = newPolyBig;
newPoly = newPolyBig;
}
newPoly[nv++] = dtris[tri*3*2+edge];
//move to next edge
edge = (edge+1)%3;
newPoly[nv++] = dtris[tri * 3 * 2 + edge];
/* move to next edge */
edge = (edge + 1) % 3;
}
else {
//move to next tri
/* move to next tri */
int twinedge = -1;
for (k=0; k<3; k++) {
if (dtris[neighbortri*3*2+3+k] == tri) {
for (k = 0; k < 3; k++) {
if (dtris[neighbortri * 3 * 2 + 3 + k] == tri) {
twinedge = k;
break;
}
}
if (twinedge==-1) {
if (twinedge == -1) {
printf("Converting navmesh: Error! Can't find neighbor edge - invalid adjacency info\n");
MEM_freeN(traversedTris);
goto returnLabel;
}
tri = neighbortri;
edge = (twinedge+1)%3;
traversedTris[tri-dtrisBase] = 1;
edge = (twinedge + 1) % 3;
traversedTris[tri - dtrisBase] = 1;
}
}
adjustedPoly = MEM_callocN(sizeof(unsigned short)*nv, "buildPolygonsByDetailedMeshes adjustedPoly");
adjustedPoly = MEM_callocN(sizeof(unsigned short) * nv, "buildPolygonsByDetailedMeshes adjustedPoly");
adjustedNv = 0;
for (i=0; i<nv; i++) {
unsigned short prev = newPoly[(nv+i-1)%nv];
for (i = 0; i < nv; i++) {
unsigned short prev = newPoly[(nv + i - 1) % nv];
unsigned short cur = newPoly[i];
unsigned short next = newPoly[(i+1)%nv];
float distSq = distPointToSegmentSq(&verts[3*cur], &verts[3*prev], &verts[3*next]);
unsigned short next = newPoly[(i + 1) % nv];
float distSq = distPointToSegmentSq(&verts[3 * cur], &verts[3 * prev], &verts[3 * next]);
static const float tolerance = 0.001f;
if (distSq>tolerance)
if (distSq > tolerance)
adjustedPoly[adjustedNv++] = cur;
}
memcpy(newPoly, adjustedPoly, adjustedNv*sizeof(unsigned short));
memcpy(newPoly, adjustedPoly, adjustedNv * sizeof(unsigned short));
MEM_freeN(adjustedPoly);
nv = adjustedNv;
allBorderTraversed = 1;
for (i=0; i<dtrisNum; i++) {
if (traversedTris[i]==0) {
//check whether it has border edges
int curpolytri = dtrisBase+i;
for (k=0; k<3; k++) {
unsigned short neighbortri = dtris[curpolytri*3*2+3+k];
if ( neighbortri==0xffff || dtrisToPolysMap[neighbortri]!=polyidx+1) {
for (i = 0; i < dtrisNum; i++) {
if (traversedTris[i] == 0) {
/* check whether it has border edges */
int curpolytri = dtrisBase + i;
for (k = 0; k < 3; k++) {
unsigned short neighbortri = dtris[curpolytri * 3 * 2 + 3 + k];
if (neighbortri == 0xffff || dtrisToPolysMap[neighbortri] != polyidx + 1) {
allBorderTraversed = 0;
break;
}
}
}
}
}
if (nv<=vertsPerPoly && allBorderTraversed) {
for (i=0; i<nv; i++) {
polys[polyidx*vertsPerPoly*2+i] = newPoly[i];
if (nv <= vertsPerPoly && allBorderTraversed) {
for (i = 0; i < nv; i++) {
polys[polyidx * vertsPerPoly * 2 + i] = newPoly[i];
}
}
@ -298,21 +299,20 @@ returnLabel:
return 1;
}
struct SortContext
{
const int* recastData;
const int* trisToFacesMap;
struct SortContext {
const int *recastData;
const int *trisToFacesMap;
};
static int compareByData(void *ctx, const void * a, const void * b)
static int compareByData(void *ctx, const void *a, const void *b)
{
return (((struct SortContext *)ctx)->recastData[((struct SortContext *)ctx)->trisToFacesMap[*(int*)a]] -
((struct SortContext *)ctx)->recastData[((struct SortContext *)ctx)->trisToFacesMap[*(int*)b]] );
return (((struct SortContext *)ctx)->recastData[((struct SortContext *)ctx)->trisToFacesMap[*(int *)a]] -
((struct SortContext *)ctx)->recastData[((struct SortContext *)ctx)->trisToFacesMap[*(int *)b]]);
}
int buildNavMeshData(const int nverts, const float* verts,
int buildNavMeshData(const int nverts, const float *verts,
const int ntris, const unsigned short *tris,
const int* recastData, const int* trisToFacesMap,
const int *recastData, const int *trisToFacesMap,
int *ndtris_r, unsigned short **dtris_r,
int *npolys_r, unsigned short **dmeshes_r, unsigned short **polys_r,
int *vertsPerPoly_r, int **dtrisToPolysMap_r, int **dtrisToTrisMap_r)
@ -333,86 +333,86 @@ int buildNavMeshData(const int nverts, const float* verts,
return 0;
}
trisMapping = MEM_callocN(sizeof(int)*ntris, "buildNavMeshData trisMapping");
trisMapping = MEM_callocN(sizeof(int) * ntris, "buildNavMeshData trisMapping");
//sort the triangles by polygon idx
for (i=0; i<ntris; i++)
trisMapping[i]=i;
/* sort the triangles by polygon idx */
for (i = 0; i < ntris; i++)
trisMapping[i] = i;
context.recastData = recastData;
context.trisToFacesMap = trisToFacesMap;
recast_qsort(trisMapping, ntris, sizeof(int), &context, compareByData);
//search first valid triangle - triangle of convex polygon
/* search first valid triangle - triangle of convex polygon */
validTriStart = -1;
for (i=0; i< ntris; i++) {
if (recastData[trisToFacesMap[trisMapping[i]]]>0) {
for (i = 0; i < ntris; i++) {
if (recastData[trisToFacesMap[trisMapping[i]]] > 0) {
validTriStart = i;
break;
}
}
if (validTriStart<0) {
if (validTriStart < 0) {
printf("Converting navmesh: Error! No valid polygons in mesh\n");
MEM_freeN(trisMapping);
return 0;
}
ndtris = ntris-validTriStart;
//fill dtris to faces mapping
dtrisToTrisMap = MEM_callocN(sizeof(int)*ndtris, "buildNavMeshData dtrisToTrisMap");
memcpy(dtrisToTrisMap, &trisMapping[validTriStart], ndtris*sizeof(int));
ndtris = ntris - validTriStart;
/* fill dtris to faces mapping */
dtrisToTrisMap = MEM_callocN(sizeof(int) * ndtris, "buildNavMeshData dtrisToTrisMap");
memcpy(dtrisToTrisMap, &trisMapping[validTriStart], ndtris * sizeof(int));
MEM_freeN(trisMapping);
//create detailed mesh triangles - copy only valid triangles
//and reserve memory for adjacency info
dtris = MEM_callocN(sizeof(unsigned short)*3*2*ndtris, "buildNavMeshData dtris");
memset(dtris, 0xffff, sizeof(unsigned short)*3*2*ndtris);
for (i=0; i<ndtris; i++) {
memcpy(dtris+3*2*i, tris+3*dtrisToTrisMap[i], sizeof(unsigned short)*3);
/* create detailed mesh triangles - copy only valid triangles
* and reserve memory for adjacency info */
dtris = MEM_callocN(sizeof(unsigned short) * 3 * 2 * ndtris, "buildNavMeshData dtris");
memset(dtris, 0xffff, sizeof(unsigned short) * 3 * 2 * ndtris);
for (i = 0; i < ndtris; i++) {
memcpy(dtris + 3 * 2 * i, tris + 3 * dtrisToTrisMap[i], sizeof(unsigned short) * 3);
}
//create new recast data corresponded to dtris and renumber for continuous indices
/* create new recast data corresponded to dtris and renumber for continuous indices */
prevPolyIdx = -1;
newPolyIdx = 0;
dtrisToPolysMap = MEM_callocN(sizeof(int)*ndtris, "buildNavMeshData dtrisToPolysMap");
for (i=0; i<ndtris; i++) {
dtrisToPolysMap = MEM_callocN(sizeof(int) * ndtris, "buildNavMeshData dtrisToPolysMap");
for (i = 0; i < ndtris; i++) {
curPolyIdx = recastData[trisToFacesMap[dtrisToTrisMap[i]]];
if (curPolyIdx!=prevPolyIdx) {
if (curPolyIdx != prevPolyIdx) {
newPolyIdx++;
prevPolyIdx=curPolyIdx;
prevPolyIdx = curPolyIdx;
}
dtrisToPolysMap[i] = newPolyIdx;
}
//build adjacency info for detailed mesh triangles
/* build adjacency info for detailed mesh triangles */
recast_buildMeshAdjacency(dtris, ndtris, nverts, 3);
//create detailed mesh description for each navigation polygon
npolys = dtrisToPolysMap[ndtris-1];
dmeshes = MEM_callocN(sizeof(unsigned short)*npolys*4, "buildNavMeshData dmeshes");
memset(dmeshes, 0, npolys*4*sizeof(unsigned short));
/* create detailed mesh description for each navigation polygon */
npolys = dtrisToPolysMap[ndtris - 1];
dmeshes = MEM_callocN(sizeof(unsigned short) * npolys * 4, "buildNavMeshData dmeshes");
memset(dmeshes, 0, npolys * 4 * sizeof(unsigned short));
dmesh = NULL;
prevpolyidx = 0;
for (i=0; i<ndtris; i++) {
for (i = 0; i < ndtris; i++) {
int curpolyidx = dtrisToPolysMap[i];
if (curpolyidx!=prevpolyidx) {
if (curpolyidx!=prevpolyidx+1) {
if (curpolyidx != prevpolyidx) {
if (curpolyidx != prevpolyidx + 1) {
printf("Converting navmesh: Error! Wrong order of detailed mesh faces\n");
return 0;
}
dmesh = dmesh==NULL ? dmeshes : dmesh+4;
dmesh[2] = (unsigned short)i; //tbase
dmesh[3] = 0; //tnum
dmesh = dmesh == NULL ? dmeshes : dmesh + 4;
dmesh[2] = (unsigned short)i; /* tbase */
dmesh[3] = 0; /* tnum */
prevpolyidx = curpolyidx;
}
dmesh[3]++;
}
//create navigation polygons
/* create navigation polygons */
vertsPerPoly = 6;
polys = MEM_callocN(sizeof(unsigned short)*npolys*vertsPerPoly*2, "buildNavMeshData polys");
memset(polys, 0xff, sizeof(unsigned short)*vertsPerPoly*2*npolys);
polys = MEM_callocN(sizeof(unsigned short) * npolys * vertsPerPoly * 2, "buildNavMeshData polys");
memset(polys, 0xff, sizeof(unsigned short) * vertsPerPoly * 2 * npolys);
buildPolygonsByDetailedMeshes(vertsPerPoly, npolys, polys, dmeshes, verts, dtris, dtrisToPolysMap);
@ -429,16 +429,16 @@ int buildNavMeshData(const int nverts, const float* verts,
}
int buildNavMeshDataByDerivedMesh(DerivedMesh *dm, int *vertsPerPoly,
int *nverts, float **verts,
int *ndtris, unsigned short **dtris,
int *npolys, unsigned short **dmeshes,
unsigned short **polys, int **dtrisToPolysMap,
int **dtrisToTrisMap, int **trisToFacesMap)
int buildNavMeshDataByDerivedMesh(DerivedMesh *dm, int *vertsPerPoly,
int *nverts, float **verts,
int *ndtris, unsigned short **dtris,
int *npolys, unsigned short **dmeshes,
unsigned short **polys, int **dtrisToPolysMap,
int **dtrisToTrisMap, int **trisToFacesMap)
{
int res = 1;
int ntris = 0, *recastData=NULL;
unsigned short *tris=NULL;
int ntris = 0, *recastData = NULL;
unsigned short *tris = NULL;
res = buildRawVertIndicesData(dm, nverts, verts, &ntris, &tris, trisToFacesMap, &recastData);
if (!res) {
@ -447,8 +447,8 @@ int buildNavMeshDataByDerivedMesh(DerivedMesh *dm, int *vertsPerPoly,
}
res = buildNavMeshData(*nverts, *verts, ntris, tris, recastData, *trisToFacesMap,
ndtris, dtris, npolys, dmeshes, polys, vertsPerPoly,
dtrisToPolysMap, dtrisToTrisMap);
ndtris, dtris, npolys, dmeshes, polys, vertsPerPoly,
dtrisToPolysMap, dtrisToTrisMap);
if (!res) {
printf("Converting navmesh: Error! Can't get vertices and indices from mesh\n");
goto exit;
@ -461,11 +461,11 @@ exit:
return res;
}
int polyFindVertex(const unsigned short* p, const int vertsPerPoly, unsigned short vertexIdx)
int polyFindVertex(const unsigned short *p, const int vertsPerPoly, unsigned short vertexIdx)
{
int i, res = -1;
for (i=0; i<vertsPerPoly; i++) {
if (p[i]==0xffff)
for (i = 0; i < vertsPerPoly; i++) {
if (p[i] == 0xffff)
break;
if (p[i] == vertexIdx) {
res = i;

@ -810,7 +810,7 @@ static int bm_loop_reverse_loop(BMesh *bm, BMFace *f
int bmesh_loop_reverse(BMesh *bm, BMFace *f)
{
#ifdef USE_BMESH_HOLES
return bmesh_loop_reverse_loop(bm, f, f->loops.first);
return bm_loop_reverse_loop(bm, f, f->loops.first);
#else
return bm_loop_reverse_loop(bm, f);
#endif
@ -1186,13 +1186,15 @@ BMFace *bmesh_sfme(BMesh *bm, BMFace *f, BMVert *v1, BMVert *v2,
{
#ifdef USE_BMESH_HOLES
BMLoopList *lst, *lst2;
#else
int first_loop_f1;
#endif
BMFace *f2;
BMLoop *l_iter, *l_first;
BMLoop *v1loop = NULL, *v2loop = NULL, *f1loop = NULL, *f2loop = NULL;
BMEdge *e;
int i, len, f1len, f2len, first_loop_f1;
int i, len, f1len, f2len;
/* verify that v1 and v2 are in face */
len = f->len;

@ -57,7 +57,7 @@ static void bm_mempool_init(BMesh *bm, const BMAllocTemplate *allocsize)
bm_mesh_chunksize_default.totface, BLI_MEMPOOL_ALLOW_ITER);
#ifdef USE_BMESH_HOLES
bm->looplistpool = BLI_mempool_create(sizeof(BMLoopList), allocsize[3], allocsize[3], FALSE, FALSE);
bm->looplistpool = BLI_mempool_create(sizeof(BMLoopList), 512, 512, 0);
#endif
/* allocate one flag pool that we don't get rid of. */

@ -233,7 +233,7 @@ void bmo_bevel_exec(BMesh *bm, BMOperator *op)
}
#if 0
//a bit of cleaner code that, alas, doens't work.
/* a bit of cleaner code that, alas, doens't work. */
/* build edge tag */
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
if (BMO_elem_flag_test(bm, e->v1, BEVEL_FLAG) || BMO_elem_flag_test(bm, e->v2, BEVEL_FLAG)) {

@ -1019,10 +1019,9 @@ void bmo_similar_verts_exec(BMesh *bm, BMOperator *op)
void bmo_rotate_uvs_exec(BMesh *bm, BMOperator *op)
{
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
// int n;
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
int dir = BMO_slot_int_get(op, "dir");
@ -1077,7 +1076,6 @@ void bmo_rotate_uvs_exec(BMesh *bm, BMOperator *op)
}
}
}
}
/**************************************************************************** *
@ -1126,10 +1124,9 @@ void bmo_reverse_uvs_exec(BMesh *bm, BMOperator *op)
void bmo_rotate_colors_exec(BMesh *bm, BMOperator *op)
{
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
// int n;
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
int dir = BMO_slot_int_get(op, "dir");

@ -645,7 +645,7 @@ static PyGetSetDef bpy_bmface_getseters[] = {
static PyGetSetDef bpy_bmloop_getseters[] = {
/* generic */
// flags are available but not used for loops.
/* flags are available but not used for loops. */
// {(char *)"select", (getter)bpy_bm_elem_hflag_get, (setter)bpy_bm_elem_hflag_set, (char *)bpy_bm_elem_select_doc, (void *)BM_ELEM_SELECT},
// {(char *)"hide", (getter)bpy_bm_elem_hflag_get, (setter)bpy_bm_elem_hflag_set, (char *)bpy_bm_elem_hide_doc, (void *)BM_ELEM_HIDDEN},
{(char *)"tag", (getter)bpy_bm_elem_hflag_get, (setter)bpy_bm_elem_hflag_set, (char *)bpy_bm_elem_tag_doc, (void *)BM_ELEM_TAG},

@ -387,7 +387,7 @@ void BPy_BM_init_types_select(void)
BPy_BMEditSelSeq_Type.tp_name = "BMEditSelSeq";
BPy_BMEditSelIter_Type.tp_name = "BMEditSelIter";
BPy_BMEditSelSeq_Type.tp_doc = NULL; // todo
BPy_BMEditSelSeq_Type.tp_doc = NULL; /* todo */
BPy_BMEditSelIter_Type.tp_doc = NULL;
BPy_BMEditSelSeq_Type.tp_repr = (reprfunc)NULL;

@ -284,7 +284,7 @@ void bpy_app_generic_callback(struct Main *UNUSED(main), struct ID *id, void *ar
if (PyList_GET_SIZE(cb_list) > 0) {
PyGILState_STATE gilstate = PyGILState_Ensure();
PyObject *args = PyTuple_New(1); // save python creating each call
PyObject *args = PyTuple_New(1); /* save python creating each call */
PyObject *func;
PyObject *ret;
Py_ssize_t pos;

@ -280,7 +280,7 @@ float BPY_driver_exec(ChannelDriver *driver, const float evaltime)
}
#if 0 // slow, with this can avoid all Py_CompileString above.
#if 0 /* slow, with this can avoid all Py_CompileString above. */
/* execute expression to get a value */
retval = PyRun_String(expr, Py_eval_input, bpy_pydriver_Dict, driver_vars);
#else

@ -69,7 +69,7 @@
#include "BPY_extern.h"
#include "../generic/bpy_internal_import.h" // our own imports
#include "../generic/bpy_internal_import.h" /* our own imports */
#include "../generic/py_capi_utils.h"
/* inittab initialization functions */
@ -180,10 +180,10 @@ void BPY_text_free_code(Text *text)
void BPY_modules_update(bContext *C)
{
#if 0 // slow, this runs all the time poll, draw etc 100's of time a sec.
#if 0 /* slow, this runs all the time poll, draw etc 100's of time a sec. */
PyObject *mod = PyImport_ImportModuleLevel("bpy", NULL, NULL, NULL, 0);
PyModule_AddObject(mod, "data", BPY_rna_module());
PyModule_AddObject(mod, "types", BPY_rna_types()); // atm this does not need updating
PyModule_AddObject(mod, "types", BPY_rna_types()); /* atm this does not need updating */
#endif
/* refreshes the main struct */
@ -268,7 +268,7 @@ void BPY_python_start(int argc, const char **argv)
Py_Initialize();
// PySys_SetArgv(argc, argv); // broken in py3, not a huge deal
// PySys_SetArgv(argc, argv); /* broken in py3, not a huge deal */
/* sigh, why do python guys not have a (char **) version anymore? */
{
int i;

@ -81,7 +81,7 @@ short BPy_reports_to_error(ReportList *reports, PyObject *exception, const short
short BPy_errors_to_report(ReportList *reports)
{
PyObject *pystring;
PyObject *pystring_format = NULL; // workaround, see below
PyObject *pystring_format = NULL; /* workaround, see below */
char *cstring;
const char *filename;
@ -110,17 +110,18 @@ short BPy_errors_to_report(ReportList *reports)
cstring = _PyUnicode_AsString(pystring);
#if 0 // ARG!. workaround for a bug in blenders use of vsnprintf
#if 0 /* ARG!. workaround for a bug in blenders use of vsnprintf */
BKE_reportf(reports, RPT_ERROR, "%s\nlocation:%s:%d\n", cstring, filename, lineno);
#else
pystring_format = PyUnicode_FromFormat(TIP_("%s\nlocation:%s:%d\n"), cstring, filename, lineno);
cstring = _PyUnicode_AsString(pystring_format);
BKE_report(reports, RPT_ERROR, cstring);
#endif
fprintf(stderr, TIP_("%s\nlocation:%s:%d\n"), cstring, filename, lineno); // not exactly needed. just for testing
/* not exactly needed. just for testing */
fprintf(stderr, TIP_("%s\nlocation:%s:%d\n"), cstring, filename, lineno);
Py_DECREF(pystring);
Py_DECREF(pystring_format); // workaround
Py_DECREF(pystring_format); /* workaround */
return 1;
}

@ -69,7 +69,7 @@ typedef struct SunSky {
float atm_BetaRM[3];
} SunSky;
void InitSunSky(struct SunSky *sunsky, float turb, float *toSun, float horizon_brightness,
void InitSunSky(struct SunSky *sunsky, float turb, const float toSun[3], float horizon_brightness,
float spread, float sun_brightness, float sun_size, float back_scatter,
float skyblendfac, short skyblendtype, float sky_exposure, float sky_colorspace);

@ -23,4 +23,9 @@
* ***** END GPL LICENSE BLOCK *****
*/
int ocean_texture(struct Tex *tex, float *texvec, struct TexResult *texres);
#ifndef __TEXTURE_OCEAN_H__
#define __TEXTURE_OCEAN_H__
int ocean_texture(struct Tex *tex, const float texvec[2], struct TexResult *texres);
#endif /* __TEXTURE_OCEAN_H__ */

@ -30,8 +30,8 @@
*/
void global_bounds_obi(Render *re, ObjectInstanceRen *obi, float *bbmin, float *bbmax);
int point_inside_volume_objectinstance(Render *re, ObjectInstanceRen *obi, float *co);
void global_bounds_obi(Render *re, ObjectInstanceRen *obi, float bbmin[3], float bbmax[3]);
int point_inside_volume_objectinstance(Render *re, ObjectInstanceRen *obi, const float co[3]);
void volume_precache(Render *re);
void free_volume_precache(Render *re);

@ -146,7 +146,7 @@ static float PerezFunction(struct SunSky *sunsky, const float *lam, float theta,
* sun_size, controls sun's size
* back_scatter, controls back scatter light
* */
void InitSunSky(struct SunSky *sunsky, float turb, float *toSun, float horizon_brightness,
void InitSunSky(struct SunSky *sunsky, float turb, const float toSun[3], float horizon_brightness,
float spread, float sun_brightness, float sun_size, float back_scatter,
float skyblendfac, short skyblendtype, float sky_exposure, float sky_colorspace)
{

@ -55,7 +55,7 @@ extern struct Render R;
/* ***** actual texture sampling ***** */
int ocean_texture(Tex *tex, float *texvec, TexResult *texres)
int ocean_texture(Tex *tex, const float texvec[2], TexResult *texres)
{
OceanTex *ot = tex->ot;
ModifierData *md;

@ -92,7 +92,7 @@ static int intersect_outside_volume(RayObject *tree, Isect *isect, float *offset
}
/* Uses ray tracing to check if a point is inside or outside an ObjectInstanceRen */
static int point_inside_obi(RayObject *tree, ObjectInstanceRen *UNUSED(obi), float *co)
static int point_inside_obi(RayObject *tree, ObjectInstanceRen *UNUSED(obi), const float co[3])
{
Isect isect= {{0}};
float dir[3] = {0.0f, 0.0f, 1.0f};
@ -118,7 +118,7 @@ static int point_inside_obi(RayObject *tree, ObjectInstanceRen *UNUSED(obi), flo
}
/* find the bounding box of an objectinstance in global space */
void global_bounds_obi(Render *re, ObjectInstanceRen *obi, float *bbmin, float *bbmax)
void global_bounds_obi(Render *re, ObjectInstanceRen *obi, float bbmin[3], float bbmax[3])
{
ObjectRen *obr = obi->obr;
VolumePrecache *vp = obi->volume_precache;
@ -826,7 +826,7 @@ void free_volume_precache(Render *re)
BLI_freelistN(&re->volumes);
}
int point_inside_volume_objectinstance(Render *re, ObjectInstanceRen *obi, float *co)
int point_inside_volume_objectinstance(Render *re, ObjectInstanceRen *obi, const float co[3])
{
RayObject *tree;
int inside=0;