When faces (like in cubes) have exactly 90 degrees angles with other
faces, the check for a vertex-normal flip became random, caused by the
infamous bad floating point resolution.
Solved with including FLT_EPSILON in the check.

Also: minor optimize for readability and removed dutch function name
(contrpuntnorm -> check_vnormal)
This commit is contained in:
Ton Roosendaal 2006-06-26 13:19:04 +00:00
parent 17929dcab8
commit dbc7dbb2b9

@ -116,6 +116,9 @@
static short test_for_displace(Render *re, Object *ob); static short test_for_displace(Render *re, Object *ob);
static void do_displacement(Render *re, Object *ob, int startface, int numface, int startvert, int numvert ); static void do_displacement(Render *re, Object *ob, int startface, int numface, int startvert, int numvert );
/* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
/* or for checking vertex normal flips */
#define FLT_EPSILON10 1.19209290e-06F
/* ------------------------------------------------------------------------- */ /* ------------------------------------------------------------------------- */
@ -346,12 +349,12 @@ static void split_v_renderfaces(Render *re, int startvlak, int startvert, int us
/* ------------------------------------------------------------------------- */ /* ------------------------------------------------------------------------- */
static int contrpuntnormr(float *n, float *puno) static int check_vnormal(float *n, float *veno)
{ {
float inp; float inp;
inp=n[0]*puno[0]+n[1]*puno[1]+n[2]*puno[2]; inp=n[0]*veno[0]+n[1]*veno[1]+n[2]*veno[2];
if(inp<0.0) return 1; if(inp < -FLT_EPSILON10) return 1;
return 0; return 0;
} }
@ -496,7 +499,7 @@ static void calc_vertexnormals(Render *re, int startvert, int startvlak, int do_
/* clear all vertex normals */ /* clear all vertex normals */
for(a=startvert; a<re->totvert; a++) { for(a=startvert; a<re->totvert; a++) {
VertRen *ver= RE_findOrAddVert(re, a); VertRen *ver= RE_findOrAddVert(re, a);
ver->n[0]=ver->n[1]=ver->n[2]= 0.0; ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
} }
/* calculate cos of angles and point-masses, use as weight factor to /* calculate cos of angles and point-masses, use as weight factor to
@ -504,19 +507,19 @@ static void calc_vertexnormals(Render *re, int startvert, int startvlak, int do_
for(a=startvlak; a<re->totvlak; a++) { for(a=startvlak; a<re->totvlak; a++) {
VlakRen *vlr= RE_findOrAddVlak(re, a); VlakRen *vlr= RE_findOrAddVlak(re, a);
if(vlr->flag & ME_SMOOTH) { if(vlr->flag & ME_SMOOTH) {
VertRen *adrve1= vlr->v1; VertRen *v1= vlr->v1;
VertRen *adrve2= vlr->v2; VertRen *v2= vlr->v2;
VertRen *adrve3= vlr->v3; VertRen *v3= vlr->v3;
VertRen *adrve4= vlr->v4; VertRen *v4= vlr->v4;
float n1[3], n2[3], n3[3], n4[3]; float n1[3], n2[3], n3[3], n4[3];
float fac1, fac2, fac3, fac4=0.0f; float fac1, fac2, fac3, fac4=0.0f;
VecSubf(n1, adrve2->co, adrve1->co); VecSubf(n1, v2->co, v1->co);
Normalise(n1); Normalise(n1);
VecSubf(n2, adrve3->co, adrve2->co); VecSubf(n2, v3->co, v2->co);
Normalise(n2); Normalise(n2);
if(adrve4==NULL) { if(v4==NULL) {
VecSubf(n3, adrve1->co, adrve3->co); VecSubf(n3, v1->co, v3->co);
Normalise(n3); Normalise(n3);
fac1= saacos(-n1[0]*n3[0]-n1[1]*n3[1]-n1[2]*n3[2]); fac1= saacos(-n1[0]*n3[0]-n1[1]*n3[1]-n1[2]*n3[2]);
@ -524,9 +527,9 @@ static void calc_vertexnormals(Render *re, int startvert, int startvlak, int do_
fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]); fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
} }
else { else {
VecSubf(n3, adrve4->co, adrve3->co); VecSubf(n3, v4->co, v3->co);
Normalise(n3); Normalise(n3);
VecSubf(n4, adrve1->co, adrve4->co); VecSubf(n4, v1->co, v4->co);
Normalise(n4); Normalise(n4);
fac1= saacos(-n4[0]*n1[0]-n4[1]*n1[1]-n4[2]*n1[2]); fac1= saacos(-n4[0]*n1[0]-n4[1]*n1[1]-n4[2]*n1[2]);
@ -535,31 +538,31 @@ static void calc_vertexnormals(Render *re, int startvert, int startvlak, int do_
fac4= saacos(-n3[0]*n4[0]-n3[1]*n4[1]-n3[2]*n4[2]); fac4= saacos(-n3[0]*n4[0]-n3[1]*n4[1]-n3[2]*n4[2]);
if(!(vlr->flag & R_NOPUNOFLIP)) { if(!(vlr->flag & R_NOPUNOFLIP)) {
if( contrpuntnormr(vlr->n, adrve4->n) ) fac4= -fac4; if( check_vnormal(vlr->n, v4->n) ) fac4= -fac4;
} }
adrve4->n[0] +=fac4*vlr->n[0]; v4->n[0] +=fac4*vlr->n[0];
adrve4->n[1] +=fac4*vlr->n[1]; v4->n[1] +=fac4*vlr->n[1];
adrve4->n[2] +=fac4*vlr->n[2]; v4->n[2] +=fac4*vlr->n[2];
} }
if(!(vlr->flag & R_NOPUNOFLIP)) { if(!(vlr->flag & R_NOPUNOFLIP)) {
if( contrpuntnormr(vlr->n, adrve1->n) ) fac1= -fac1; if( check_vnormal(vlr->n, v1->n) ) fac1= -fac1;
if( contrpuntnormr(vlr->n, adrve2->n) ) fac2= -fac2; if( check_vnormal(vlr->n, v2->n) ) fac2= -fac2;
if( contrpuntnormr(vlr->n, adrve3->n) ) fac3= -fac3; if( check_vnormal(vlr->n, v3->n) ) fac3= -fac3;
} }
adrve1->n[0] +=fac1*vlr->n[0]; v1->n[0] +=fac1*vlr->n[0];
adrve1->n[1] +=fac1*vlr->n[1]; v1->n[1] +=fac1*vlr->n[1];
adrve1->n[2] +=fac1*vlr->n[2]; v1->n[2] +=fac1*vlr->n[2];
adrve2->n[0] +=fac2*vlr->n[0]; v2->n[0] +=fac2*vlr->n[0];
adrve2->n[1] +=fac2*vlr->n[1]; v2->n[1] +=fac2*vlr->n[1];
adrve2->n[2] +=fac2*vlr->n[2]; v2->n[2] +=fac2*vlr->n[2];
adrve3->n[0] +=fac3*vlr->n[0]; v3->n[0] +=fac3*vlr->n[0];
adrve3->n[1] +=fac3*vlr->n[1]; v3->n[1] +=fac3*vlr->n[1];
adrve3->n[2] +=fac3*vlr->n[2]; v3->n[2] +=fac3*vlr->n[2];
if(do_tangent) if(do_tangent)
calc_tangent_vector(re, vlr, fac1, fac2, fac3, fac4); calc_tangent_vector(re, vlr, fac1, fac2, fac3, fac4);
@ -598,16 +601,17 @@ static void calc_vertexnormals(Render *re, int startvert, int startvlak, int do_
VlakRen *vlr= RE_findOrAddVlak(re, a); VlakRen *vlr= RE_findOrAddVlak(re, a);
if((vlr->flag & R_NOPUNOFLIP)==0) { if((vlr->flag & R_NOPUNOFLIP)==0) {
VertRen *adrve1= vlr->v1; float *v1= vlr->v1->n;
VertRen *adrve2= vlr->v2; float *v2= vlr->v2->n;
VertRen *adrve3= vlr->v3; float *v3= vlr->v3->n;
VertRen *adrve4= vlr->v4; float *v4= vlr->v4->n;
float *nor= vlr->n;
vlr->puno &= ~15; vlr->puno &= ~15;
if ((vlr->n[0]*adrve1->n[0]+vlr->n[1]*adrve1->n[1]+vlr->n[2]*adrve1->n[2])<0.0) vlr->puno= 1; if ((nor[0]*v1[0] + nor[1]*v1[1] + nor[2]*v1[2]) < -FLT_EPSILON10) vlr->puno= 1;
if ((vlr->n[0]*adrve2->n[0]+vlr->n[1]*adrve2->n[1]+vlr->n[2]*adrve2->n[2])<0.0) vlr->puno+= 2; if ((nor[0]*v2[0] + nor[1]*v2[1] + nor[2]*v2[2]) < -FLT_EPSILON10) vlr->puno+= 2;
if ((vlr->n[0]*adrve3->n[0]+vlr->n[1]*adrve3->n[1]+vlr->n[2]*adrve3->n[2])<0.0) vlr->puno+= 4; if ((nor[0]*v3[0] + nor[1]*v3[1] + nor[2]*v3[2]) < -FLT_EPSILON10) vlr->puno+= 4;
if(adrve4) { if(v4) {
if((vlr->n[0]*adrve4->n[0]+vlr->n[1]*adrve4->n[1]+vlr->n[2]*adrve4->n[2])<0.0) vlr->puno+= 8; if((nor[0]*v4[0] + nor[1]*v4[1] + nor[2]*v4[2]) < -FLT_EPSILON10 ) vlr->puno+= 8;
} }
} }
} }
@ -626,28 +630,28 @@ static void calc_fluidsimnormals(Render *re, int startvert, int startvlak, int d
for(a=startvlak; a<re->totvlak; a++) { for(a=startvlak; a<re->totvlak; a++) {
VlakRen *vlr= RE_findOrAddVlak(re, a); VlakRen *vlr= RE_findOrAddVlak(re, a);
if(vlr->flag & ME_SMOOTH) { if(vlr->flag & ME_SMOOTH) {
VertRen *adrve1= vlr->v1; VertRen *v1= vlr->v1;
VertRen *adrve2= vlr->v2; VertRen *v2= vlr->v2;
VertRen *adrve3= vlr->v3; VertRen *v3= vlr->v3;
VertRen *adrve4= vlr->v4; VertRen *v4= vlr->v4;
float n1[3], n2[3], n3[3], n4[3]; float n1[3], n2[3], n3[3], n4[3];
float fac1, fac2, fac3, fac4=0.0f; float fac1, fac2, fac3, fac4=0.0f;
VecSubf(n1, adrve2->co, adrve1->co); VecSubf(n1, v2->co, v1->co);
Normalise(n1); Normalise(n1);
VecSubf(n2, adrve3->co, adrve2->co); VecSubf(n2, v3->co, v2->co);
Normalise(n2); Normalise(n2);
if(adrve4==NULL) { if(v4==NULL) {
VecSubf(n3, adrve1->co, adrve3->co); VecSubf(n3, v1->co, v3->co);
Normalise(n3); Normalise(n3);
fac1= saacos(-n1[0]*n3[0]-n1[1]*n3[1]-n1[2]*n3[2]); fac1= saacos(-n1[0]*n3[0]-n1[1]*n3[1]-n1[2]*n3[2]);
fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]); fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]);
fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]); fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
} }
else { else {
VecSubf(n3, adrve4->co, adrve3->co); VecSubf(n3, v4->co, v3->co);
Normalise(n3); Normalise(n3);
VecSubf(n4, adrve1->co, adrve4->co); VecSubf(n4, v1->co, v4->co);
Normalise(n4); Normalise(n4);
fac1= saacos(-n4[0]*n1[0]-n4[1]*n1[1]-n4[2]*n1[2]); fac1= saacos(-n4[0]*n1[0]-n4[1]*n1[1]-n4[2]*n1[2]);
@ -656,7 +660,7 @@ static void calc_fluidsimnormals(Render *re, int startvert, int startvlak, int d
fac4= saacos(-n3[0]*n4[0]-n3[1]*n4[1]-n3[2]*n4[2]); fac4= saacos(-n3[0]*n4[0]-n3[1]*n4[1]-n3[2]*n4[2]);
if(!(vlr->flag & R_NOPUNOFLIP)) { if(!(vlr->flag & R_NOPUNOFLIP)) {
if( contrpuntnormr(vlr->n, adrve4->n) ) fac4= -fac4; if( check_vnormal(vlr->n, v4->n) ) fac4= -fac4;
} }
} }
@ -696,16 +700,16 @@ static void calc_fluidsimnormals(Render *re, int startvert, int startvlak, int d
for(a=startvlak; a<re->totvlak; a++) { for(a=startvlak; a<re->totvlak; a++) {
VlakRen *vlr= RE_findOrAddVlak(re, a); VlakRen *vlr= RE_findOrAddVlak(re, a);
if((vlr->flag & R_NOPUNOFLIP)==0) { if((vlr->flag & R_NOPUNOFLIP)==0) {
VertRen *adrve1= vlr->v1; VertRen *v1= vlr->v1;
VertRen *adrve2= vlr->v2; VertRen *v2= vlr->v2;
VertRen *adrve3= vlr->v3; VertRen *v3= vlr->v3;
VertRen *adrve4= vlr->v4; VertRen *v4= vlr->v4;
vlr->puno &= ~15; vlr->puno &= ~15;
if ((vlr->n[0]*adrve1->n[0]+vlr->n[1]*adrve1->n[1]+vlr->n[2]*adrve1->n[2])<0.0) vlr->puno= 1; if ((vlr->n[0]*v1->n[0]+vlr->n[1]*v1->n[1]+vlr->n[2]*v1->n[2])<0.0) vlr->puno= 1;
if ((vlr->n[0]*adrve2->n[0]+vlr->n[1]*adrve2->n[1]+vlr->n[2]*adrve2->n[2])<0.0) vlr->puno+= 2; if ((vlr->n[0]*v2->n[0]+vlr->n[1]*v2->n[1]+vlr->n[2]*v2->n[2])<0.0) vlr->puno+= 2;
if ((vlr->n[0]*adrve3->n[0]+vlr->n[1]*adrve3->n[1]+vlr->n[2]*adrve3->n[2])<0.0) vlr->puno+= 4; if ((vlr->n[0]*v3->n[0]+vlr->n[1]*v3->n[1]+vlr->n[2]*v3->n[2])<0.0) vlr->puno+= 4;
if(adrve4) { if(v4) {
if((vlr->n[0]*adrve4->n[0]+vlr->n[1]*adrve4->n[1]+vlr->n[2]*adrve4->n[2])<0.0) vlr->puno+= 8; if((vlr->n[0]*v4->n[0]+vlr->n[1]*v4->n[1]+vlr->n[2]*v4->n[2])<0.0) vlr->puno+= 8;
} }
} }
} }
@ -2966,13 +2970,6 @@ static void set_fullsample_flag(Render *re)
} }
} }
/* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp */
#ifdef FLT_EPSILON
#undef FLT_EPSILON
#endif
#define FLT_EPSILON 1.19209290e-06F
static void check_non_flat_quads(Render *re) static void check_non_flat_quads(Render *re)
{ {
VlakRen *vlr, *vlr1; VlakRen *vlr, *vlr1;
@ -2992,7 +2989,7 @@ static void check_non_flat_quads(Render *re)
v3= vlr->v3; v3= vlr->v3;
v4= vlr->v4; v4= vlr->v4;
VECSUB(nor, v1->co, v2->co); VECSUB(nor, v1->co, v2->co);
if( ABS(nor[0])<FLT_EPSILON && ABS(nor[1])<FLT_EPSILON && ABS(nor[2])<FLT_EPSILON ) { if( ABS(nor[0])<FLT_EPSILON10 && ABS(nor[1])<FLT_EPSILON10 && ABS(nor[2])<FLT_EPSILON10 ) {
vlr->v1= v2; vlr->v1= v2;
vlr->v2= v3; vlr->v2= v3;
vlr->v3= v4; vlr->v3= v4;
@ -3000,19 +2997,19 @@ static void check_non_flat_quads(Render *re)
} }
else { else {
VECSUB(nor, v2->co, v3->co); VECSUB(nor, v2->co, v3->co);
if( ABS(nor[0])<FLT_EPSILON && ABS(nor[1])<FLT_EPSILON && ABS(nor[2])<FLT_EPSILON ) { if( ABS(nor[0])<FLT_EPSILON10 && ABS(nor[1])<FLT_EPSILON10 && ABS(nor[2])<FLT_EPSILON10 ) {
vlr->v2= v3; vlr->v2= v3;
vlr->v3= v4; vlr->v3= v4;
vlr->v4= NULL; vlr->v4= NULL;
} }
else { else {
VECSUB(nor, v3->co, v4->co); VECSUB(nor, v3->co, v4->co);
if( ABS(nor[0])<FLT_EPSILON && ABS(nor[1])<FLT_EPSILON && ABS(nor[2])<FLT_EPSILON ) { if( ABS(nor[0])<FLT_EPSILON10 && ABS(nor[1])<FLT_EPSILON10 && ABS(nor[2])<FLT_EPSILON10 ) {
vlr->v4= NULL; vlr->v4= NULL;
} }
else { else {
VECSUB(nor, v4->co, v1->co); VECSUB(nor, v4->co, v1->co);
if( ABS(nor[0])<FLT_EPSILON && ABS(nor[1])<FLT_EPSILON && ABS(nor[2])<FLT_EPSILON ) { if( ABS(nor[0])<FLT_EPSILON10 && ABS(nor[1])<FLT_EPSILON10 && ABS(nor[2])<FLT_EPSILON10 ) {
vlr->v4= NULL; vlr->v4= NULL;
} }
} }