Refactor: move ParticleFunction to separate file

This commit is contained in:
Jacques Lucke 2020-07-17 14:23:57 +02:00
parent 2679236047
commit e3f8768d8a
4 changed files with 252 additions and 183 deletions

@ -44,9 +44,11 @@ set(SRC
intern/implicit.h
intern/implicit_blender.c
intern/implicit_eigen.cpp
intern/particle_function.cc
intern/simulation_update.cc
SIM_mass_spring.h
SIM_particle_function.hh
SIM_simulation_update.hh
)

@ -0,0 +1,89 @@
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __SIM_PARTICLE_FUNCTION_HH__
#define __SIM_PARTICLE_FUNCTION_HH__
#include "FN_attributes_ref.hh"
#include "FN_multi_function.hh"
#include "BLI_resource_collector.hh"
namespace blender::sim {
class ParticleFunctionInput {
public:
virtual ~ParticleFunctionInput() = default;
virtual void add_input(fn::AttributesRef attributes,
fn::MFParamsBuilder &params,
ResourceCollector &resources) const = 0;
};
class ParticleFunction {
private:
const fn::MultiFunction *global_fn_;
const fn::MultiFunction *per_particle_fn_;
Array<const ParticleFunctionInput *> global_inputs_;
Array<const ParticleFunctionInput *> per_particle_inputs_;
Array<bool> output_is_global_;
Vector<uint> global_output_indices_;
Vector<uint> per_particle_output_indices_;
Vector<fn::MFDataType> output_types_;
Vector<StringRefNull> output_names_;
friend class ParticleFunctionEvaluator;
public:
ParticleFunction(const fn::MultiFunction *global_fn,
const fn::MultiFunction *per_particle_fn,
Span<const ParticleFunctionInput *> global_inputs,
Span<const ParticleFunctionInput *> per_particle_inputs,
Span<bool> output_is_global);
};
class ParticleFunctionEvaluator {
private:
ResourceCollector resources_;
const ParticleFunction &particle_fn_;
IndexMask mask_;
fn::MFContextBuilder global_context_;
fn::MFContextBuilder per_particle_context_;
fn::AttributesRef particle_attributes_;
Vector<void *> outputs_;
bool is_computed_ = false;
public:
ParticleFunctionEvaluator(const ParticleFunction &particle_fn,
IndexMask mask,
fn::AttributesRef particle_attributes);
~ParticleFunctionEvaluator();
void compute();
fn::GVSpan get(uint output_index, StringRef expected_name) const;
template<typename T> fn::VSpan<T> get(uint output_index, StringRef expected_name) const
{
return this->get(output_index, expected_name).typed<T>();
}
private:
void compute_globals();
void compute_per_particle();
};
} // namespace blender::sim
#endif /* __SIM_PARTICLE_FUNCTION_HH__ */

@ -0,0 +1,160 @@
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "SIM_particle_function.hh"
namespace blender::sim {
ParticleFunction::ParticleFunction(const fn::MultiFunction *global_fn,
const fn::MultiFunction *per_particle_fn,
Span<const ParticleFunctionInput *> global_inputs,
Span<const ParticleFunctionInput *> per_particle_inputs,
Span<bool> output_is_global)
: global_fn_(global_fn),
per_particle_fn_(per_particle_fn),
global_inputs_(global_inputs),
per_particle_inputs_(per_particle_inputs),
output_is_global_(output_is_global)
{
for (uint i : output_is_global_.index_range()) {
if (output_is_global_[i]) {
uint param_index = global_inputs_.size() + global_output_indices_.size();
fn::MFParamType param_type = global_fn_->param_type(param_index);
BLI_assert(param_type.is_output());
output_types_.append(param_type.data_type());
output_names_.append(global_fn_->param_name(param_index));
global_output_indices_.append(i);
}
else {
uint param_index = per_particle_inputs_.size() + per_particle_output_indices_.size();
fn::MFParamType param_type = per_particle_fn_->param_type(param_index);
BLI_assert(param_type.is_output());
output_types_.append(param_type.data_type());
output_names_.append(per_particle_fn_->param_name(param_index));
per_particle_output_indices_.append(i);
}
}
}
ParticleFunctionEvaluator::ParticleFunctionEvaluator(const ParticleFunction &particle_fn,
IndexMask mask,
fn::AttributesRef particle_attributes)
: particle_fn_(particle_fn),
mask_(mask),
particle_attributes_(particle_attributes),
outputs_(particle_fn_.output_types_.size(), nullptr)
{
}
ParticleFunctionEvaluator::~ParticleFunctionEvaluator()
{
for (uint output_index : outputs_.index_range()) {
void *buffer = outputs_[output_index];
fn::MFDataType data_type = particle_fn_.output_types_[output_index];
BLI_assert(data_type.is_single()); /* For now. */
const fn::CPPType &type = data_type.single_type();
if (particle_fn_.output_is_global_[output_index]) {
type.destruct(buffer);
}
else {
type.destruct_indices(outputs_[0], mask_);
}
}
}
void ParticleFunctionEvaluator::compute()
{
BLI_assert(!is_computed_);
this->compute_globals();
this->compute_per_particle();
is_computed_ = true;
}
fn::GVSpan ParticleFunctionEvaluator::get(uint output_index, StringRef expected_name) const
{
#ifdef DEBUG
StringRef real_name = particle_fn_.output_names_[output_index];
BLI_assert(expected_name == real_name);
BLI_assert(is_computed_);
#endif
UNUSED_VARS_NDEBUG(expected_name);
const void *buffer = outputs_[output_index];
const fn::CPPType &type = particle_fn_.output_types_[output_index].single_type();
if (particle_fn_.output_is_global_[output_index]) {
return fn::GVSpan::FromSingleWithMaxSize(type, buffer);
}
else {
return fn::GVSpan(fn::GSpan(type, buffer, mask_.min_array_size()));
}
}
void ParticleFunctionEvaluator::compute_globals()
{
if (particle_fn_.global_fn_ == nullptr) {
return;
}
fn::MFParamsBuilder params(*particle_fn_.global_fn_, mask_.min_array_size());
/* Add input parameters. */
for (const ParticleFunctionInput *input : particle_fn_.global_inputs_) {
input->add_input(particle_attributes_, params, resources_);
}
/* Add output parameters. */
for (uint output_index : particle_fn_.global_output_indices_) {
fn::MFDataType data_type = particle_fn_.output_types_[output_index];
BLI_assert(data_type.is_single()); /* For now. */
const fn::CPPType &type = data_type.single_type();
void *buffer = resources_.linear_allocator().allocate(type.size(), type.alignment());
params.add_uninitialized_single_output(fn::GMutableSpan(type, buffer, 1));
outputs_[output_index] = buffer;
}
particle_fn_.global_fn_->call({0}, params, global_context_);
}
void ParticleFunctionEvaluator::compute_per_particle()
{
if (particle_fn_.per_particle_fn_ == nullptr) {
return;
}
fn::MFParamsBuilder params(*particle_fn_.per_particle_fn_, mask_.min_array_size());
/* Add input parameters. */
for (const ParticleFunctionInput *input : particle_fn_.per_particle_inputs_) {
input->add_input(particle_attributes_, params, resources_);
}
/* Add output parameters. */
for (uint output_index : particle_fn_.per_particle_output_indices_) {
fn::MFDataType data_type = particle_fn_.output_types_[output_index];
BLI_assert(data_type.is_single()); /* For now. */
const fn::CPPType &type = data_type.single_type();
void *buffer = resources_.linear_allocator().allocate(type.size() * mask_.min_array_size(),
type.alignment());
params.add_uninitialized_single_output(fn::GMutableSpan(type, buffer, mask_.min_array_size()));
outputs_[output_index] = buffer;
}
particle_fn_.per_particle_fn_->call(mask_, params, global_context_);
}
} // namespace blender::sim

@ -14,6 +14,7 @@
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "SIM_particle_function.hh"
#include "SIM_simulation_update.hh"
#include "BKE_customdata.h"
@ -260,189 +261,6 @@ static void update_simulation_state_list(Simulation *simulation,
add_missing_particle_states(simulation, state_names);
}
class ParticleFunctionInput {
public:
virtual ~ParticleFunctionInput() = default;
virtual void add_input(fn::AttributesRef attributes,
fn::MFParamsBuilder &params,
ResourceCollector &resources) const = 0;
};
class ParticleFunction {
private:
const fn::MultiFunction *global_fn_;
const fn::MultiFunction *per_particle_fn_;
Array<const ParticleFunctionInput *> global_inputs_;
Array<const ParticleFunctionInput *> per_particle_inputs_;
Array<bool> output_is_global_;
Vector<uint> global_output_indices_;
Vector<uint> per_particle_output_indices_;
Vector<fn::MFDataType> output_types_;
Vector<StringRefNull> output_names_;
friend class ParticleFunctionEvaluator;
public:
ParticleFunction(const fn::MultiFunction *global_fn,
const fn::MultiFunction *per_particle_fn,
Span<const ParticleFunctionInput *> global_inputs,
Span<const ParticleFunctionInput *> per_particle_inputs,
Span<bool> output_is_global)
: global_fn_(global_fn),
per_particle_fn_(per_particle_fn),
global_inputs_(global_inputs),
per_particle_inputs_(per_particle_inputs),
output_is_global_(output_is_global)
{
for (uint i : output_is_global_.index_range()) {
if (output_is_global_[i]) {
uint param_index = global_inputs_.size() + global_output_indices_.size();
fn::MFParamType param_type = global_fn_->param_type(param_index);
BLI_assert(param_type.is_output());
output_types_.append(param_type.data_type());
output_names_.append(global_fn_->param_name(param_index));
global_output_indices_.append(i);
}
else {
uint param_index = per_particle_inputs_.size() + per_particle_output_indices_.size();
fn::MFParamType param_type = per_particle_fn_->param_type(param_index);
BLI_assert(param_type.is_output());
output_types_.append(param_type.data_type());
output_names_.append(per_particle_fn_->param_name(param_index));
per_particle_output_indices_.append(i);
}
}
}
};
class ParticleFunctionEvaluator {
private:
ResourceCollector resources_;
const ParticleFunction &particle_fn_;
IndexMask mask_;
fn::MFContextBuilder global_context_;
fn::MFContextBuilder per_particle_context_;
fn::AttributesRef particle_attributes_;
Vector<void *> outputs_;
bool is_computed_ = false;
public:
ParticleFunctionEvaluator(const ParticleFunction &particle_fn,
IndexMask mask,
fn::AttributesRef particle_attributes)
: particle_fn_(particle_fn),
mask_(mask),
particle_attributes_(particle_attributes),
outputs_(particle_fn_.output_types_.size(), nullptr)
{
}
~ParticleFunctionEvaluator()
{
for (uint output_index : outputs_.index_range()) {
void *buffer = outputs_[output_index];
fn::MFDataType data_type = particle_fn_.output_types_[output_index];
BLI_assert(data_type.is_single()); /* For now. */
const fn::CPPType &type = data_type.single_type();
if (particle_fn_.output_is_global_[output_index]) {
type.destruct(buffer);
}
else {
type.destruct_indices(outputs_[0], mask_);
}
}
}
void compute()
{
BLI_assert(!is_computed_);
this->compute_globals();
this->compute_per_particle();
is_computed_ = true;
}
template<typename T> fn::VSpan<T> get(uint output_index, StringRef expected_name) const
{
return this->get(output_index, expected_name).typed<T>();
}
fn::GVSpan get(uint output_index, StringRef expected_name) const
{
#ifdef DEBUG
StringRef real_name = particle_fn_.output_names_[output_index];
BLI_assert(expected_name == real_name);
BLI_assert(is_computed_);
#endif
UNUSED_VARS_NDEBUG(expected_name);
const void *buffer = outputs_[output_index];
const fn::CPPType &type = particle_fn_.output_types_[output_index].single_type();
if (particle_fn_.output_is_global_[output_index]) {
return fn::GVSpan::FromSingleWithMaxSize(type, buffer);
}
else {
return fn::GVSpan(fn::GSpan(type, buffer, mask_.min_array_size()));
}
}
private:
void compute_globals()
{
if (particle_fn_.global_fn_ == nullptr) {
return;
}
fn::MFParamsBuilder params(*particle_fn_.global_fn_, mask_.min_array_size());
/* Add input parameters. */
for (const ParticleFunctionInput *input : particle_fn_.global_inputs_) {
input->add_input(particle_attributes_, params, resources_);
}
/* Add output parameters. */
for (uint output_index : particle_fn_.global_output_indices_) {
fn::MFDataType data_type = particle_fn_.output_types_[output_index];
BLI_assert(data_type.is_single()); /* For now. */
const fn::CPPType &type = data_type.single_type();
void *buffer = resources_.linear_allocator().allocate(type.size(), type.alignment());
params.add_uninitialized_single_output(fn::GMutableSpan(type, buffer, 1));
outputs_[output_index] = buffer;
}
particle_fn_.global_fn_->call({0}, params, global_context_);
}
void compute_per_particle()
{
if (particle_fn_.per_particle_fn_ == nullptr) {
return;
}
fn::MFParamsBuilder params(*particle_fn_.per_particle_fn_, mask_.min_array_size());
/* Add input parameters. */
for (const ParticleFunctionInput *input : particle_fn_.per_particle_inputs_) {
input->add_input(particle_attributes_, params, resources_);
}
/* Add output parameters. */
for (uint output_index : particle_fn_.per_particle_output_indices_) {
fn::MFDataType data_type = particle_fn_.output_types_[output_index];
BLI_assert(data_type.is_single()); /* For now. */
const fn::CPPType &type = data_type.single_type();
void *buffer = resources_.linear_allocator().allocate(type.size() * mask_.min_array_size(),
type.alignment());
params.add_uninitialized_single_output(
fn::GMutableSpan(type, buffer, mask_.min_array_size()));
outputs_[output_index] = buffer;
}
particle_fn_.per_particle_fn_->call(mask_, params, global_context_);
}
};
class ParticleAttributeInput : public ParticleFunctionInput {
private:
std::string attribute_name_;