-= Collisions -=

1. Test for fast moving edges
This commit is contained in:
Daniel Genrich 2008-05-27 22:46:57 +00:00
parent da36e8abca
commit ed42c9a676

@ -498,6 +498,7 @@ DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float
VECADDMUL ( to, v3, w3 );
}
int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
@ -1189,8 +1190,16 @@ int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierDat
edgecollpair.p22 = collpair->bp3;
}
if((edgecollpair.p11 == 3) && (edgecollpair.p12 == 6))
printf("Ahier!\n");
if((edgecollpair.p11 == 6) && (edgecollpair.p12 == 3))
printf("Ahier!\n");
if ( !cloth_are_edges_adjacent ( clmd, collmd, &edgecollpair ) )
{
// printf("Collision between:\n");
// printf("p11: %d, p12: %d, p21: %d, p22: %d\n", edgecollpair.p11, edgecollpair.p12, edgecollpair.p21, edgecollpair.p22);
// always put coll points in p21/p22
VECSUB ( x1, verts1[edgecollpair.p12].txold, verts1[edgecollpair.p11].txold );
VECSUB ( v1, verts1[edgecollpair.p12].tv, verts1[edgecollpair.p11].tv );
@ -1206,11 +1215,14 @@ int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierDat
for ( k = 0; k < numsolutions; k++ )
{
// printf("sol %d: %lf\n", k, solution[k]);
if ( ( solution[k] >= DBL_EPSILON ) && ( solution[k] <= 1.0 ) )
if ( ( solution[k] >= ALMOST_ZERO ) && ( solution[k] <= 1.0 ) && ( solution[k] > ALMOST_ZERO))
{
float a,b;
float out_normal[3];
float distance;
float impulse = 0;
float I_mag;
float m1, m2;
// move verts
VECADDS(triA[0], verts1[edgecollpair.p11].txold, verts1[edgecollpair.p11].tv, mintime);
@ -1224,28 +1236,57 @@ int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierDat
if ((distance <= clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree ) + ALMOST_ZERO) && (INPR(out_normal, out_normal) > 0))
{
// printf("found edge, dist: %f\n", distance);
float vrel_1_to_2[3], temp[3], temp2[3], out_normalVelocity;
float desiredVn;
VECCOPY(vrel_1_to_2, verts1[edgecollpair.p11].tv);
VecMulf(vrel_1_to_2, 1.0 - a);
VECCOPY(temp, verts1[edgecollpair.p12].tv);
VecMulf(temp, a);
VECADD(vrel_1_to_2, vrel_1_to_2, temp);
VECCOPY(temp, verts1[edgecollpair.p21].tv);
VecMulf(temp, 1.0 - b);
VECCOPY(temp2, verts1[edgecollpair.p22].tv);
VecMulf(temp2, b);
VECADD(temp, temp, temp2);
VECSUB(vrel_1_to_2, vrel_1_to_2, temp);
out_normalVelocity = INPR(vrel_1_to_2, out_normal);
if(out_normalVelocity < 0.0)
{
out_normalVelocity*= -1.0;
VecMulf(out_normal, -1.0);
}
/* Inelastic repulsion impulse. */
/*
// Calculate which normal velocity we need.
float desiredVn = (normalVelocity * (float)solution[k] - (.1 * (clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree )) - sqrt(squaredDistance)) - ALMOST_ZERO);
desiredVn = (out_normalVelocity * (float)solution[k] - (.1 * (clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree )) - sqrt(distance)) - ALMOST_ZERO);
// Now calculate what impulse we need to reach that velocity.
float m1 = interpolateOnEdge(cloth1.getVertexWeight(v11idx), cloth1.getVertexWeight(v12idx), a1);
float m2 = interpolateOnEdge(cloth2.getVertexWeight(v21idx), cloth2.getVertexWeight(v22idx), a2);
float I_mag = (normalVelocity - desiredVn) / (1/m1 + 1/m2);
I_mag = (out_normalVelocity - desiredVn) / 2.0; // / (1/m1 + 1/m2);
// Finally apply that impulse.
applyInterpolatedImpulsesEdge(out_impulses1[v11idx], out_impulses1[v12idx], out_impulses2[v21idx], out_impulses2[v22idx],
a1, a2, -I_mag, normal);
++out_impulseCounter1[v11idx]; ++out_impulseCounter1[v12idx];
++out_impulseCounter2[v21idx]; ++out_impulseCounter2[v22idx];
impulse = (2.0 * -I_mag) / (a*a + (1.0-a)*(1.0-a) + b*b + (1.0-b)*(1.0-b));
*/ // return true;
VECADDMUL ( verts1[edgecollpair.p11].impulse, out_normal, (1.0-a) * impulse );
verts1[edgecollpair.p11].impulse_count++;
VECADDMUL ( verts1[edgecollpair.p12].impulse, out_normal, a * impulse );
verts1[edgecollpair.p12].impulse_count++;
// return true;
result = 1;
break;
}
else
{
// missing from collision.hpp
}
mintime = MIN2(mintime, (float)solution[k]);
break;
@ -1253,37 +1294,6 @@ int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierDat
}
}
}
/*
if(result)
{
// move triangles to collision point in time
VECADDS(triA[0], verts1[collpair->ap1].txold, verts1[collpair->ap1].tv, mintime);
VECADDS(triA[1], verts1[collpair->ap2].txold, verts1[collpair->ap2].tv, mintime);
VECADDS(triA[2], verts1[collpair->ap3].txold, verts1[collpair->ap3].tv, mintime);
VECADDS(triB[0], collmd->current_x[collpair->bp1].co, collmd->current_v[collpair->bp1].co, mintime);
VECADDS(triB[1], collmd->current_x[collpair->bp2].co, collmd->current_v[collpair->bp2].co, mintime);
VECADDS(triB[2], collmd->current_x[collpair->bp3].co, collmd->current_v[collpair->bp3].co, mintime);
// check distance there
distance = plNearestPoints (triA[0], triA[1], triA[2], triB[0], triB[1], triB[2], collpair->pa,collpair->pb,collpair->vector );
if(distance <= (clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree ) + ALMOST_ZERO))
{
CollPair *next = collpair;
next++;
collpair->distance = clmd->coll_parms->epsilon;
collpair->time = mintime;
VECCOPY ( collpair->normal, collpair->vector );
Normalize ( collpair->normal );
// cloth_collision_response_moving ( clmd, collmd, collpair, next );
}
}
*/
return result;
}
@ -1419,7 +1429,7 @@ int cloth_bvh_objcollisions_do ( ClothModifierData * clmd, CollisionModifierData
}
}
}
/*
result += cloth_collision_moving ( clmd, collmd, collisions, collisions_index );
// apply impulses in parallel
@ -1438,7 +1448,7 @@ int cloth_bvh_objcollisions_do ( ClothModifierData * clmd, CollisionModifierData
}
}
}
*/
}
}