Expand Cycles to use the new baking API in Blender.
It works on the selected object, and the panel can be accessed in the Render panel (similar to where it is for the Blender Internal).
It bakes for the active texture of each material of the object. The active texture is currently defined as the active Image Texture node present in the material nodetree. If you don't want the baking to override an existent material, make sure the active Image Texture node is not connected to the nodetree. The active texture is also the texture shown in the viewport in the rendered mode.
Remember to save your images after the baking is complete.
Note: Bake currently only works in the CPU
Note: This is not supported by Cycles standalone because a lot of the work is done in Blender as part of the operator only, not the engine (Cycles).
Documentation:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Bake
Supported Passes:
-----------------
Data Passes
* Normal
* UV
* Diffuse/Glossy/Transmission/Subsurface/Emit Color
Light Passes
* AO
* Combined
* Shadow
* Diffuse/Glossy/Transmission/Subsurface/Emit Direct/Indirect
* Environment
Review: D421
Reviewed by: Campbell Barton, Brecht van Lommel, Sergey Sharybin, Thomas Dinge
Original design by Brecht van Lommel.
The entire commit history can be found on the branch: bake-cycles
Indirect and Direct samples can now be clamped individually. This way we can clamp the indirect samples (fireflies), while keeping the direct highlights.
Example render: http://www.pasteall.org/pic/show.php?id=66586
WARNING: This breaks backwards compatibility. If you had Clamping enabled in an old file, you must re-enable either Direct/Indirect clamping or both again.
Reviewed by: brecht
Differential Revision: https://developer.blender.org/D303
This is done by adding a Volume Scatter node. In many cases you will want to
add together a Volume Absorption and Volume Scatter node with the same color
and density to get the expected results.
This should work with branched path tracing, mixing closures, overlapping
volumes, etc. However there's still various optimizations needed for sampling.
The main missing thing from the volume branch is the equiangular sampling for
homogeneous volumes.
The heterogeneous scattering code was arranged such that we can use a single
stratified random number for distance sampling, which gives less noise than
pseudo random numbers for each step. For volumes where the color is textured
there still seems to be something off, needs to be investigated.
This to avoids build conflicts with libc++ on FreeBSD, these __ prefixed values
are reserved for compilers. I apologize to anyone who has patches or branches
and has to go through the pain of merging this change, it may be easiest to do
these same replacements in your code and then apply/merge the patch.
Ref T37477.
* Render Passes are now available for Subsurface Scattering (Direct, Indirect and Color pass).
This is part of my GSoC project, SVN merge of r58587, r58828 and r58835.
multiple importance sampling, so you can disable them for diffuse/glossy/transmission.
The Light Path node here is still weak and does not give this info. To make that
work we'd need to evaluate the shader multiple times which is slow and we can't
detect well enough when it is actually needed.
* reverted r50430
* removed 2 util_params.h includes from r50428, these were causing trouble with OIIO in CUDA compilation. The purpose of these was to define the ustring type, but can just use the standard string type from util_string as well.
=== BVH build time optimizations ===
* BVH building was multithreaded. Not all building is multithreaded, packing
and the initial bounding/splitting is still single threaded, but recursive
splitting is, which was the main bottleneck.
* Object splitting now uses binning rather than sorting of all elements, using
code from the Embree raytracer from Intel.
http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/
* Other small changes to avoid allocations, pack memory more tightly, avoid
some unnecessary operations, ...
These optimizations do not work yet when Spatial Splits are enabled, for that
more work is needed. There's also other optimizations still needed, in
particular for the case of many low poly objects, the packing step and node
memory allocation.
BVH raytracing time should remain about the same, but BVH build time should be
significantly reduced, test here show speedup of about 5x to 10x on a dual core
and 5x to 25x on an 8-core machine, depending on the scene.
=== Threads ===
Centralized task scheduler for multithreading, which is basically the
CPU device threading code wrapped into something reusable.
Basic idea is that there is a single TaskScheduler that keeps a pool of threads,
one for each core. Other places in the code can then create a TaskPool that they
can drop Tasks in to be executed by the scheduler, and wait for them to complete
or cancel them early.
=== Normal ====
Added a Normal output to the texture coordinate node. This currently
gives the object space normal, which is the same under object animation.
In the future this might become a "generated" normal so it's also stable for
deforming objects, but for now it's already useful for non-deforming objects.
=== Render Layers ===
Per render layer Samples control, leaving it to 0 will use the common scene
setting.
Environment pass will now render environment even if film is set to transparent.
Exclude Layers" added. Scene layers (all object that influence the render,
directly or indirectly) are shared between all render layers. However sometimes
it's useful to leave out some object influence for a particular render layer.
That's what this option allows you to do.
=== Filter Glossy ===
When using a value higher than 0.0, this will blur glossy reflections after
blurry bounces, to reduce noise at the cost of accuracy. 1.0 is a good
starting value to tweak.
Some light paths have a low probability of being found while contributing much
light to the pixel. As a result these light paths will be found in some pixels
and not in others, causing fireflies. An example of such a difficult path might
be a small light that is causing a small specular highlight on a sharp glossy
material, which we are seeing through a rough glossy material. With path tracing
it is difficult to find the specular highlight, but if we increase the roughness
on the material the highlight gets bigger and softer, and so easier to find.
Often this blurring will be hardly noticeable, because we are seeing it through
a blurry material anyway, but there are also cases where this will lead to a
loss of detail in lighting.
but this makes it more reliable for now.
Also add an integrator "Clamp" option, to clamp very light samples to a maximum
value. This will reduce accuracy but may help reducing noise and speed up
convergence.
emitting objects or world lighting do not contribute to the shadow pass.
Consider this more as a pass useful for some compositing tricks, unlike
other lighting passes this pass can't be used to exactly reconstruct the
combined pass.
Currently supported passes:
* Combined, Z, Normal, Object Index, Material Index, Emission, Environment,
Diffuse/Glossy/Transmission x Direct/Indirect/Color
Not supported yet:
* UV, Vector, Mist
Only enabled for CPU devices at the moment, will do GPU tweaks tommorrow,
also for environment importance sampling.
Documentation:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Passes