revisions: 38166,38167,38177,38179,38180,38187,38242
To be implemented after merge:
1) add pydocs(rst) for the video texture new defines
2) see if a NodeSetLocalMatrix would fit well
#43439 by kupoman
Changing the worldTransform and localTransform python attributes to use BLI_math to simplify the code
#38242 by kupoman
Adding the constants SOURCE_ERROR, SOURCE_EMPTY, SOURCE_READY, SOURCE_PLAYING, SOURCE_STOPPED to the video texture module. Updates to the documentation will follow after a merge with trunk
#38187 by kupoman
Updates to the documentation to reflect that worldScale is now writable, and added localTransform and worldTransform to KX_GameObject.
#38180 by kupoman
The Transform attribute of KX_GameObject was based on world space data. I converted that one to worldTransform, and added a localTransform for local space transform information.
#38179 by kupoman
Fixed the transform attribute of KX_GameObject's set method to properly deal with negative scaling.
#38177 by kupoman
Updated the transform property on KX_GameObject so that it is now read/write, and added the corresponding set method. Also simplified the get method by calling GetOpenGLMatrix instead of making the matrix myself.
#38167 by kupoman
Adding a read only transform attribute to KX_GameObject that returns a 4x4 matrix representing the object's transformations.
#38166 by kupoman
Adding a worldScale attribute to KX_GameObject. This attribute scales the object independently of its parent's scale.
- Use BGL buffer instead of string for image data.
- Add buffer interface to image source.
- Allow customization of pixel format.
- Add valid property to check if the image data is available.
The image property of all Image source objects will now
return a BGL 'buffer' object. Previously it was returning
a string, which was not working at all with Python 3.1.
The BGL buffer type allows sequence access to bytes and
is directly usable in BGL OpenGL wrapper functions.
The buffer is formated as a 1 dimensional array of bytes
with 4 bytes per pixel in RGBA order.
BGL buffers will also be accepted in the ImageBuff load()
and plot() functions.
It is possible to customize the pixel format by using
the VideoTexture.imageToArray(image, mode) function:
the first argument is a Image source object, the second
optional argument is a format string using the R, G, B,
A, 0 and 1 characters. For example "BGR" means that each
pixel will be 3 bytes, corresponding to the Blue, Green
and Red channel in that order. Use 0 for a fixed hex 00
value, 1 for hex FF. The default mode is "RGBA".
All Image source objects now support the buffer interface
which allows to create memoryview objects for direct access
to the image internal buffer without memory copy. The buffer
format is one dimensional array of bytes with 4 bytes per
pixel in RGBA order. The buffer is writable, which allows
custom modifications of the image data.
v = memoryview(source)
A bug in the Python 3.1 buffer API will cause a crash if
the memoryview object cannot be created. Therefore, you
must always check first that an image data is available
before creating a memoryview object. Use the new valid
attribute for that:
if source.valid:
v = memoryview(source)
...
Note: the BGL buffer object itself does not yet support
the buffer interface.
Note: the valid attribute makes sense only if you use
image source in conjunction with texture object like this:
# refresh texture but keep image data in memory
texture.refresh(False)
if texture.source.valid:
v = memoryview(texture.source)
# process image
...
# invalidate image for next texture refresh
texture.source.refresh()
Limitation: While memoryview objects exist, the image cannot be
resized. Resizing occurs with ImageViewport objects when the
viewport size is changed or with ImageFFmpeg when a new image
is reloaded for example. Any attempt to resize will cause a
runtime error. Delete the memoryview objects is you want to
resize an image source object.
* Removed modules Expression and CValue, neither were ever available.
* Added GameLogic.EvalExpression(exp) from the Expression module, evaluates an expression like the expression controller (not sure if this is really that useful since python is far more advanced).
* resetting the original blend file path didint work (own fault == -> =)
* Py3.x PyModule_Create didnt allow importing since it didn't add to sys.modules,
Looks like they want us to use init-tab array, but this doesn't suit us since
it needs to be setup before python is initialized.
* Documented GameLogic.globalDict
I added module clearing before there was checks for invalid python objects, so now its not needed for BGE Builtin types at least.
also made the builtin modules get re-used if they already exist and clear all user modules when the game engine finishes so with Module-Py-Controllers the referenced modules are at least up to date when pressing Pkey.
- More verbose error messages.
- BL_Shader wasnt setting error messages on some errors
- FilterNormal depth attribute was checking for float which is bad because scripts often expect ints assigned to float attributes.
- Added a check to PyVecTo for a tuple rather then always using a generic python sequence. On my system this is over 2x faster with an optmized build.
The new class VideoTexture.ImageMirror() is available to perform
automatic mirror rendering.
Constructor:
VideoTexture.ImageMirror(scene,observer,mirror,material)
scene: reference to the scene that will be rendered.
Both observer and mirror must be part of that scene.
observer: reference to a game object used as view point for
mirror rendering: the scene will be rendered through
the mirror as if the active camera was at the observer
location. Usually the observer is the active camera
but you can use any game obejct.
mirror: reference to the mesh object holding the mirror.
material: material ID of the mirror texture as returned by
VideoTexture.materialID(). The mirror is formed by
the polygons mapped to that material.
There are no specific methods or attributes. ImageMirror inherits
all methods and attributes from ImageRender. You must refresh the
parent VideoTexture.Texture object regularly to update the mirror
rendering.
Guidelines on how to create a working mirror:
- Use a texture that is specific to the mirror so that the mirror
rendering only appears on the mirror.
- The mirror must be planar; the algorithm works well only for planar
or quasi planar mirror. For spherical mirror, you will get better
results with ImageRender and a camera at the center of the mirror.
ImageMirror automatically computes the mirror orientation and
position. The mirror doesn't need to be rectangular, it can be
circular or take any form provided it is planar.
- The mirror up direction must be along the Z axis in local mesh
coordinates. If the mirror is not vertical, ImageMirror will
compute the up direction as being the projection of the Z axis
on the mirror plane.
- UV mapping must be set right to get correct mirror rendering:
- make a planar projection of the mirror polygons (Unwrap or projection from view)
- eventually rotate the projection so that UV up direction corresponds to the mesh Z axis
- scale the projection so that the extreme points touch the border of the texture
- flip the UV projection horizontally (scale -1 on X axis). This is needed
because the mirror texture is rendered from the back of the mirror and
thus is reversed from the view point of the observer. Horizontal flip
in the UV map restores the correct orientation.
Besides these simple rules, the mirror rendering is completely automatic.
In particular, you don't need to allocate a camera for the rendering,
ImageMirror creates dynamically a camera for that. The reflection is correct
even on large angles. The mirror can be a dynamic and moving object, the
algorithm always computes the correct camera position based on observer
relative position. You don't have to worry about mirror position in the scene:
the algorithm automatically computes the camera frustum so that any object
behind the mirror is not rendered.
Warnings:
- observer and mirror are references to game objects. ImageMirror keeps
a pointer to them but does not increment the reference count. You must ensure
that these game objects are not deleted as long as you refresh() the ImageMirror
object. You must release the ImageMirror object before you delete the game
objects. To release the ImageMirror object (normally stored in GameLogic),
just assign it to None.
- Mirror rendering is automatically skipped when the observer is behind the mirror
but it is not disabled when the mirror is out of sight of the observer.
You should only refresh the mirror when you know that the observer is likely to see it.
For example, no need to refresh a car inner mirror when the player is not in the car.
Example:
contr = GameLogic.getCurrentController()
# object holding the mirror
mirror = contr.getOwner()
scene = GameLogic.getCurrentScene()
# observer will be the active camere
camera = scene.getObjectList()['OBCamera']
matID = VideoTexture.materialID(mirror, 'IMmirror.png')
GameLogic.mirror = VideoTexture.Texture(mirror, matID)
GameLogic.mirror.source = VideoTexture.ImageMirror(scene,camera,mirror,matID)
# to render the mirror, just call GameLogic.mirror.refresh(True) on each frame.
You can download a demo game (with a video file) here:
http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.zip
For those who have already downloaded the demo, you can just update the blend file:
http://home.scarlet.be/~tsi46445/blender/MirrorTextureDemo.blend
The new class VideoTexture.ImageRender() is available to perform
render to texture in the GE.
Constructor:
VideoTexture.ImageRender(scene,cam)
cam : camera object that will be used for the render.
It must be an inactive camera.
scene: reference to the scene that will be rendered.
The camera must be part of that scene.
Returns an object that can be used as a source of a VideoTexture.Texture object
Methods: none
Attributes:
background:
4-tuple representing the background color of the rendering
as RGBA color components, each component being an integer
between 0 and 255.
Default value = [0,0,255,255] (=saturated blue)
Note: athough the alpha component can be specified, it is not
supported at the moment, the alpha channel of the rendered
texture will always be 255. You can however introduce an
alpha channel by appending a FilterBlueScreen() filter, it
will set the alpha to 0 (transparent) on all pixels that were
not rendered.
capsize:
2-tuple representing the size of the render area as [x,y] number of pixels.
Default value = largest rectangle with power of 2 dimensions that fits in the canvas
You may want to reduce the render area to increase performance. For example,
a render area of [256,128] is probably sufficient to implement a car inner mirror.
For best performance, use power of 2 dimensions and don't set any filter: this
allows direct transfer between the GPU frame buffer and texture memory
without going through the host.
alpha:
Boolean indicating if the render alpha channel should be copied to the texture.
Default value: False
Experimental, do not use.
whole:
Boolean indicating if the entire canvas should be used for the rendering.
Default value: False
Note: There is no reason to set this attribute to True: the rendering will
in any case be scaled down to the largest rectangle with power of 2
dimensions before transfering to the texture.
Attributes inherited from the ImageBase class:
image : image binary data, read-only
size : [x,y] size of the texture, read-only
scale : set to True for fast scale down in case the render area dimensions are not power of 2
flip : set to True for vertical flip.
filter: set a post-processing filter on the render.
Notes:
* Aspect Ratio
For consistent results in Blender and Blenderplayer, the same aspect ratio used
by Blender to draw the camera viewport (Scene(F10)->Format tab->Size X/Size Y)
is also used during the rendering. You can control the portion of the scene that
will be rendered by "looking through the camera": the zone inside the outer dotted
rectangle will be rendered to the texture.
In order to reproduce the scene without X/Y distortion, you must apply the texture
on an object or portion of object that has the same aspect ratio.
* Order of rendering
The rendereing is performed when you call the refresh() method of the parent
Texture object. This happens outside the normal frame rendering and will have no
effect on it.
However, if you want to use ImageViewport and ImageRender at the same time, be
sure to refresh the viewport texture before the render texture because the latter
will destroy the frame buffer that is used by the former to update the texture.
* Scene status
The meshes are not updated during the render to texture: the rendered texture
is one frame late to the rendered frame with regards to mesh deformation.
* Example:
cont = GameLogic.getCurrentController()
# object that receives the texture
obj = contr.getOwner()
scene = GameLogic.getCurrentScene()
# camera used for the render
tvcam = scene.getObjectList()['OBtvcam']
# assume obj has some faces UV assigned to tv.png
matID = VideoTexture.materialID(obj, 'IMtv.png')
GameLogic.tv = VideoTexture.Texture(obj, matID)
GameLogic.tv.source = VideoTexture.ImageRender(scene,tvcam)
GameLogic.tv.source.capsize = [256,256]
# to render the texture, just call GameLogic.tv.refresh(True) on each frame.
You can download a demo game (with a video file) here:
http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.zip
For those who have already downloaded the demo, you can just update the blend file:
http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend
The FFmpeg library allows to load image files. Although it is possible
to load images using the VideoFFmpeg class, it is not very efficient.
The new class VideoTexture.ImageFFmpeg is dedicated to image management.
Constructor:
-----------
VideoTexture.ImageFFmpeg('image_file_name')
Opens the file but does not load the texture yet.
The file name can also be a network address. It can also be a video
file name; in that case only the first image is loaded.
Methods:
-------
refresh(True)
Loads the image to texture.
You just need to call it once, the file is automatically closed after
that and calling refresh() again will have no effect.
reload('new_file_name')
Reloads the image (if new_file_name is omitted) or loads a new image.
The file is opened but the texture is not updated yet, you need
to call refresh() once to load the texture.
Attributes:
----------
status
returns the image status:
2 : file opened, texture not loaded
3 : file closed, texture loaded
image
returns the image data as a string of RGBA pixel
size
returns the image size [x,y]
scale
get/set the scale flag.
If the scale flag is False, the image is rescale to texture format
using gluScaleImage() function, slow but good quality.
If the scale flag is True, the image is rescaled using a fast but
less accurate algorithm.
flip
get/set Y-flip flag.
Set to True by default as FFmpeg always provides the image upside down
filter
get/set filter(s) on the image.
Example:
The only compilation system that works for sure is the MSVC project files. I've tried my best to
update the other compilation system but I count on the community to check and fix them.
This is Zdeno Miklas video texture plugin ported to trunk.
The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html)
EXCEPT for the following:
The module name is changed to VideoTexture (instead of blendVideoTex).
A new (and only) video source is now available: VideoFFmpeg()
You must pass 1 to 4 arguments when you create it (you can use named arguments):
VideoFFmpeg(file) : play a video file
VideoFFmpeg(file, capture, rate, width, height) : start a live video capture
file:
In the first form, file is a video file name, relative to startup directory.
It can also be a URL, FFmpeg will happily stream a video from a network source.
In the second form, file is empty or is a hint for the format of the video capture.
In Windows, file is ignored and should be empty or not specified.
In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394.
The user specifies the type of device with the file parameter:
[<device_type>][:<standard>]
<device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l'
<standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc'
The driver name is constructed automatically from the device types:
v4l : /dev/video<capture>
dv1394: /dev/dv1394/<capture>
If you have different driver name, you can specify the driver name explicitely
instead of device type. Examples of valid file parameter:
/dev/v4l/video0:pal
/dev/ieee1394/1:ntsc
dv1394:ntsc
v4l:pal
:secam
capture:
Defines the index number of the capture source, starting from 0. The first capture device is always 0.
The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1.
rate:
the capture frame rate, by default 25 frames/sec
width:
height:
Width and height of the video capture in pixel, default value 0.
In Windows you must specify these values and they must fit with the capture device capability.
For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480,
you must specify one of these couple of values or the opening of the video source will fail.
In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height.
Simple example
**************
1. Texture definition script:
import VideoTexture
contr = GameLogic.getCurrentController()
obj = contr.getOwner()
if not hasattr(GameLogic, 'video'):
matID = VideoTexture.materialID(obj, 'MAVideoMat')
GameLogic.video = VideoTexture.Texture(obj, matID)
GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg')
# Streaming is also possible:
#GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg')
GameLogic.vidSrc.repeat = -1
# If the video dimensions are not a power of 2, scaling must be done before
# sending the texture to the GPU. This is done by default with gluScaleImage()
# but you can also use a faster, but less precise, scaling by setting scale
# to True. Best approach is to convert the video offline and set the dimensions right.
GameLogic.vidSrc.scale = True
# FFmpeg always delivers the video image upside down, so flipping is enabled automatically
#GameLogic.vidSrc.flip = True
if contr.getSensors()[0].isPositive():
GameLogic.video.source = GameLogic.vidSrc
GameLogic.vidSrc.play()
2. Texture refresh script:
obj = GameLogic.getCurrentController().getOwner()
if hasattr(GameLogic, 'video') != 0:
GameLogic.video.refresh(True)
You can download this demo here:
http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blendhttp://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg