blender/extern/carve/include/carve/csg_triangulator.hpp
Sergey Sharybin e81f2853c8 Carve booleans library integration
==================================

Merging Carve library integration project into the trunk.

This commit switches Boolean modifier to another library which handles
mesh boolean operations in much stable and faster way, resolving old
well-known limitations of intern boolop library.

Carve is integrating as alternative interface for boolop library and
which makes it totally transparent for blender sources to switch between
old-fashioned boolop and new Carve backends.

Detailed changes in this commit:

- Integrated needed subset of Carve library sources into extern/
  Added script for re-bundling it (currently works only if repo
  was cloned by git-svn).
- Added BOP_CarveInterface for boolop library which can be used by
  Boolean modifier.
- Carve backend is enabled by default, can be disabled by WITH_BF_CARVE
  SCons option and WITH_CARVE CMake option.
- If Boost library is found in build environment it'll be used for
  unordered collections. If Boost isn't found, it'll fallback to TR1
  implementation for GCC compilers. Boost is obligatory if MSVC is used.

Tested on Linux 64bit and Windows 7 64bit.

NOTE: behavior of flat objects was changed. E.g. Plane-Sphere now gives
      plane with circle hole, not plane with semisphere. Don't think
      it's really issue because it's not actually defined behavior in
      such situations and both of ways might be useful. Since it's
      only known "regression" think it's OK to deal with it.

Details are there http://wiki.blender.org/index.php/User:Nazg-gul/CarveBooleans

Special thanks to:

- Ken Hughes: author of original carve integration patch.
- Campbell Barton: help in project development, review tests.
- Tobias Sargeant: author of Carve library, help in resolving some
                   merge stoppers, bug fixing.
2012-01-16 16:46:00 +00:00

435 lines
15 KiB
C++

// Begin License:
// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
// All rights reserved.
//
// This file is part of the Carve CSG Library (http://carve-csg.com/)
//
// This file may be used under the terms of the GNU General Public
// License version 2.0 as published by the Free Software Foundation
// and appearing in the file LICENSE.GPL2 included in the packaging of
// this file.
//
// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE.
// End:
#include <carve/csg.hpp>
#include <carve/tag.hpp>
#include <carve/poly.hpp>
#include <carve/triangulator.hpp>
#include <deque>
namespace carve {
namespace csg {
namespace detail {
template<bool with_improvement>
class CarveTriangulator : public csg::CSG::Hook {
public:
CarveTriangulator() {
}
virtual ~CarveTriangulator() {
}
virtual void processOutputFace(std::vector<carve::mesh::MeshSet<3>::face_t *> &faces,
const carve::mesh::MeshSet<3>::face_t *orig,
bool flipped) {
std::vector<carve::mesh::MeshSet<3>::face_t *> out_faces;
size_t n_tris = 0;
for (size_t f = 0; f < faces.size(); ++f) {
CARVE_ASSERT(faces[f]->nVertices() >= 3);
n_tris += faces[f]->nVertices() - 2;
}
out_faces.reserve(n_tris);
for (size_t f = 0; f < faces.size(); ++f) {
carve::mesh::MeshSet<3>::face_t *face = faces[f];
if (face->nVertices() == 3) {
out_faces.push_back(face);
continue;
}
std::vector<triangulate::tri_idx> result;
std::vector<carve::mesh::MeshSet<3>::vertex_t *> vloop;
face->getVertices(vloop);
triangulate::triangulate(
carve::mesh::MeshSet<3>::face_t::projection_mapping(face->project),
vloop,
result);
if (with_improvement) {
triangulate::improve(
carve::mesh::MeshSet<3>::face_t::projection_mapping(face->project),
vloop,
carve::mesh::vertex_distance(),
result);
}
std::vector<carve::mesh::MeshSet<3>::vertex_t *> fv;
fv.resize(3);
for (size_t i = 0; i < result.size(); ++i) {
fv[0] = vloop[result[i].a];
fv[1] = vloop[result[i].b];
fv[2] = vloop[result[i].c];
out_faces.push_back(face->create(fv.begin(), fv.end(), false));
}
delete face;
}
std::swap(faces, out_faces);
}
};
}
typedef detail::CarveTriangulator<false> CarveTriangulator;
typedef detail::CarveTriangulator<true> CarveTriangulatorWithImprovement;
class CarveTriangulationImprover : public csg::CSG::Hook {
public:
CarveTriangulationImprover() {
}
virtual ~CarveTriangulationImprover() {
}
virtual void processOutputFace(std::vector<carve::mesh::MeshSet<3>::face_t *> &faces,
const carve::mesh::MeshSet<3>::face_t *orig,
bool flipped) {
if (faces.size() == 1) return;
// doing improvement as a separate hook is much messier than
// just incorporating it into the triangulation hook.
typedef std::map<carve::mesh::MeshSet<3>::vertex_t *, size_t> vert_map_t;
std::vector<carve::mesh::MeshSet<3>::face_t *> out_faces;
vert_map_t vert_map;
out_faces.reserve(faces.size());
carve::mesh::MeshSet<3>::face_t::projection_mapping projector(faces[0]->project);
std::vector<triangulate::tri_idx> result;
for (size_t f = 0; f < faces.size(); ++f) {
carve::mesh::MeshSet<3>::face_t *face = faces[f];
if (face->nVertices() != 3) {
out_faces.push_back(face);
} else {
triangulate::tri_idx tri;
for (carve::mesh::MeshSet<3>::face_t::edge_iter_t i = face->begin(); i != face->end(); ++i) {
size_t v = 0;
vert_map_t::iterator j = vert_map.find(i->vert);
if (j == vert_map.end()) {
v = vert_map.size();
vert_map[i->vert] = v;
} else {
v = (*j).second;
}
tri.v[i.idx()] = v;
}
result.push_back(tri);
delete face;
}
}
std::vector<carve::mesh::MeshSet<3>::vertex_t *> verts;
verts.resize(vert_map.size());
for (vert_map_t::iterator i = vert_map.begin(); i != vert_map.end(); ++i) {
verts[(*i).second] = (*i).first;
}
triangulate::improve(projector, verts, carve::mesh::vertex_distance(), result);
std::vector<carve::mesh::MeshSet<3>::vertex_t *> fv;
fv.resize(3);
for (size_t i = 0; i < result.size(); ++i) {
fv[0] = verts[result[i].a];
fv[1] = verts[result[i].b];
fv[2] = verts[result[i].c];
out_faces.push_back(orig->create(fv.begin(), fv.end(), false));
}
std::swap(faces, out_faces);
}
};
class CarveTriangulationQuadMerger : public csg::CSG::Hook {
// this code is incomplete.
typedef std::map<V2, F2> edge_map_t;
public:
CarveTriangulationQuadMerger() {
}
virtual ~CarveTriangulationQuadMerger() {
}
double scoreQuad(edge_map_t::iterator i, edge_map_t &edge_map) {
if (!(*i).second.first || !(*i).second.second) return -1;
return 0;
}
carve::mesh::MeshSet<3>::face_t *mergeQuad(edge_map_t::iterator i, edge_map_t &edge_map) {
return NULL;
}
void recordEdge(carve::mesh::MeshSet<3>::vertex_t *v1,
carve::mesh::MeshSet<3>::vertex_t *v2,
carve::mesh::MeshSet<3>::face_t *f,
edge_map_t &edge_map) {
if (v1 < v2) {
edge_map[V2(v1, v2)].first = f;
} else {
edge_map[V2(v2, v1)].second = f;
}
}
virtual void processOutputFace(std::vector<carve::mesh::MeshSet<3>::face_t *> &faces,
const carve::mesh::MeshSet<3>::face_t *orig,
bool flipped) {
if (faces.size() == 1) return;
std::vector<carve::mesh::MeshSet<3>::face_t *> out_faces;
edge_map_t edge_map;
out_faces.reserve(faces.size());
poly::p2_adapt_project<3> projector(faces[0]->project);
for (size_t f = 0; f < faces.size(); ++f) {
carve::mesh::MeshSet<3>::face_t *face = faces[f];
if (face->nVertices() != 3) {
out_faces.push_back(face);
} else {
carve::mesh::MeshSet<3>::face_t::vertex_t *v1, *v2, *v3;
v1 = face->edge->vert;
v2 = face->edge->next->vert;
v3 = face->edge->next->next->vert;
recordEdge(v1, v2, face, edge_map);
recordEdge(v2, v3, face, edge_map);
recordEdge(v3, v1, face, edge_map);
}
}
for (edge_map_t::iterator i = edge_map.begin(); i != edge_map.end();) {
if ((*i).second.first && (*i).second.second) {
++i;
} else {
edge_map.erase(i++);
}
}
while (edge_map.size()) {
edge_map_t::iterator i = edge_map.begin();
edge_map_t::iterator best = i;
double best_score = scoreQuad(i, edge_map);
for (++i; i != edge_map.end(); ++i) {
double score = scoreQuad(i, edge_map);
if (score > best_score) best = i;
}
if (best_score < 0) break;
out_faces.push_back(mergeQuad(best, edge_map));
}
if (edge_map.size()) {
tagable::tag_begin();
for (edge_map_t::iterator i = edge_map.begin(); i != edge_map.end(); ++i) {
carve::mesh::MeshSet<3>::face_t *a = const_cast<carve::mesh::MeshSet<3>::face_t *>((*i).second.first);
carve::mesh::MeshSet<3>::face_t *b = const_cast<carve::mesh::MeshSet<3>::face_t *>((*i).second.first);
if (a && a->tag_once()) out_faces.push_back(a);
if (b && b->tag_once()) out_faces.push_back(b);
}
}
std::swap(faces, out_faces);
}
};
class CarveHoleResolver : public csg::CSG::Hook {
public:
CarveHoleResolver() {
}
virtual ~CarveHoleResolver() {
}
bool findRepeatedEdges(const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &vertices,
std::list<std::pair<size_t, size_t> > &edge_pos) {
std::map<V2, size_t> edges;
for (size_t i = 0; i < vertices.size() - 1; ++i) {
edges[std::make_pair(vertices[i], vertices[i+1])] = i;
}
edges[std::make_pair(vertices[vertices.size()-1], vertices[0])] = vertices.size() - 1;
for (std::map<V2, size_t>::iterator i = edges.begin(); i != edges.end(); ++i) {
V2 rev = V2((*i).first.second, (*i).first.first);
std::map<V2, size_t>::iterator j = edges.find(rev);
if (j != edges.end()) {
edge_pos.push_back(std::make_pair((*i).second, (*j).second));
}
}
return edge_pos.size() > 0;
}
void flood(size_t t1,
size_t t2,
size_t old_grp,
size_t new_grp_1,
size_t new_grp_2,
std::vector<size_t> &grp,
const std::vector<triangulate::tri_idx> &tris,
const std::map<std::pair<size_t, size_t>, size_t> &tri_edge) {
grp[t1] = new_grp_1;
grp[t2] = new_grp_2;
std::deque<size_t> to_visit;
to_visit.push_back(t1);
to_visit.push_back(t2);
std::vector<std::pair<size_t, size_t> > rev;
rev.resize(3);
while (to_visit.size()) {
size_t curr = to_visit.front();
to_visit.pop_front();
triangulate::tri_idx ct = tris[curr];
rev[0] = std::make_pair(ct.b, ct.a);
rev[1] = std::make_pair(ct.c, ct.b);
rev[2] = std::make_pair(ct.a, ct.c);
for (size_t i = 0; i < 3; ++i) {
std::map<std::pair<size_t, size_t>, size_t>::const_iterator adj = tri_edge.find(rev[i]);
if (adj == tri_edge.end()) continue;
size_t next = (*adj).second;
if (grp[next] != old_grp) continue;
grp[next] = grp[curr];
to_visit.push_back(next);
}
}
}
void findPerimeter(const std::vector<triangulate::tri_idx> &tris,
const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &verts,
std::vector<carve::mesh::MeshSet<3>::vertex_t *> &out) {
std::map<std::pair<size_t, size_t>, size_t> edges;
for (size_t i = 0; i < tris.size(); ++i) {
edges[std::make_pair(tris[i].a, tris[i].b)] = i;
edges[std::make_pair(tris[i].b, tris[i].c)] = i;
edges[std::make_pair(tris[i].c, tris[i].a)] = i;
}
std::map<size_t, size_t> unpaired;
for (std::map<std::pair<size_t, size_t>, size_t>::iterator i = edges.begin(); i != edges.end(); ++i) {
if (edges.find(std::make_pair((*i).first.second, (*i).first.first)) == edges.end()) {
CARVE_ASSERT(unpaired.find((*i).first.first) == unpaired.end());
unpaired[(*i).first.first] = (*i).first.second;
}
}
out.clear();
out.reserve(unpaired.size());
size_t start = (*unpaired.begin()).first;
size_t vert = start;
do {
out.push_back(verts[vert]);
CARVE_ASSERT(unpaired.find(vert) != unpaired.end());
vert = unpaired[vert];
} while (vert != start);
}
virtual void processOutputFace(std::vector<carve::mesh::MeshSet<3>::face_t *> &faces,
const carve::mesh::MeshSet<3>::face_t *orig,
bool flipped) {
std::vector<carve::mesh::MeshSet<3>::face_t *> out_faces;
for (size_t f = 0; f < faces.size(); ++f) {
carve::mesh::MeshSet<3>::face_t *face = faces[f];
if (face->nVertices() == 3) {
out_faces.push_back(face);
continue;
}
std::vector<carve::mesh::MeshSet<3>::vertex_t *> vloop;
face->getVertices(vloop);
std::list<std::pair<size_t, size_t> > rep_edges;
if (!findRepeatedEdges(vloop, rep_edges)) {
out_faces.push_back(face);
continue;
}
std::vector<triangulate::tri_idx> result;
triangulate::triangulate(
carve::mesh::MeshSet<3>::face_t::projection_mapping(face->project),
vloop,
result);
std::map<std::pair<size_t, size_t>, size_t> tri_edge;
for (size_t i = 0; i < result.size(); ++i) {
tri_edge[std::make_pair(result[i].a, result[i].b)] = i;
tri_edge[std::make_pair(result[i].b, result[i].c)] = i;
tri_edge[std::make_pair(result[i].c, result[i].a)] = i;
}
std::vector<size_t> grp;
grp.resize(result.size(), 0);
size_t grp_max = 0;
while (rep_edges.size()) {
std::pair<size_t, size_t> e1, e2;
e1.first = rep_edges.front().first;
e1.second = (e1.first + 1) % vloop.size();
e2.first = rep_edges.front().second;
e2.second = (e2.first + 1) % vloop.size();
rep_edges.pop_front();
CARVE_ASSERT(tri_edge.find(e1) != tri_edge.end());
size_t t1 = tri_edge[e1];
CARVE_ASSERT(tri_edge.find(e2) != tri_edge.end());
size_t t2 = tri_edge[e2];
if (grp[t1] != grp[t2]) {
continue;
}
size_t t1g = ++grp_max;
size_t t2g = ++grp_max;
flood(t1, t2, grp[t1], t1g, t2g, grp, result, tri_edge);
}
std::set<size_t> groups;
std::copy(grp.begin(), grp.end(), std::inserter(groups, groups.begin()));
// now construct perimeters for each group.
std::vector<triangulate::tri_idx> grp_tris;
grp_tris.reserve(result.size());
for (std::set<size_t>::iterator i = groups.begin(); i != groups.end(); ++i) {
size_t grp_id = *i;
grp_tris.clear();
for (size_t j = 0; j < grp.size(); ++j) {
if (grp[j] == grp_id) {
grp_tris.push_back(result[j]);
}
}
std::vector<carve::mesh::MeshSet<3>::vertex_t *> grp_perim;
findPerimeter(grp_tris, vloop, grp_perim);
out_faces.push_back(face->create(grp_perim.begin(), grp_perim.end(), false));
}
}
std::swap(faces, out_faces);
}
};
}
}