blender/intern/cycles/render/tile.cpp
Lukas Stockner 548eb9eb4b Cycles: Sort tiles in rendering order at construction time
This commit modifies the TileManager to sort render tiles once after tiling the image,
instead of searching the next tile every time a new tile is acquired by a device.

This makes acquiring a tile run in constant time, therefore the render time is linear
w.r.t. the amount of tiles, instead of the quadratic dependency before.

Furthermore, each (logical) device now has its own Tile list, which makes acquiring
a tile for a specific device easier.
Also, some code in the TileManager was deduplicated.

Reviewers: dingto, sergey

Differential Revision: https://developer.blender.org/D1684
2015-12-23 13:14:36 +01:00

234 lines
5.9 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tile.h"
#include "util_algorithm.h"
#include "util_types.h"
CCL_NAMESPACE_BEGIN
namespace {
class TileComparator {
public:
TileComparator(TileOrder order, int2 center)
: order_(order),
center_(center)
{}
bool operator()(Tile &a, Tile &b)
{
switch(order_) {
case TILE_CENTER:
{
float2 dist_a = make_float2(center_.x - (a.x + a.w/2),
center_.y - (a.y + a.h/2));
float2 dist_b = make_float2(center_.x - (b.x + b.w/2),
center_.y - (b.y + b.h/2));
return dot(dist_a, dist_a) < dot(dist_b, dist_b);
}
case TILE_LEFT_TO_RIGHT:
return (a.x == b.x)? (a.y < b.y): (a.x < b.x);
case TILE_RIGHT_TO_LEFT:
return (a.x == b.x)? (a.y < b.y): (a.x > b.x);
case TILE_TOP_TO_BOTTOM:
return (a.y == b.y)? (a.x < b.x): (a.y > b.y);
case TILE_BOTTOM_TO_TOP:
default:
return (a.y == b.y)? (a.x < b.x): (a.y < b.y);
}
}
protected:
TileOrder order_;
int2 center_;
};
} /* namespace */
TileManager::TileManager(bool progressive_, int num_samples_, int2 tile_size_, int start_resolution_,
bool preserve_tile_device_, bool background_, TileOrder tile_order_, int num_devices_)
{
progressive = progressive_;
tile_size = tile_size_;
tile_order = tile_order_;
start_resolution = start_resolution_;
num_samples = num_samples_;
num_devices = num_devices_;
preserve_tile_device = preserve_tile_device_;
background = background_;
BufferParams buffer_params;
reset(buffer_params, 0);
}
TileManager::~TileManager()
{
}
void TileManager::reset(BufferParams& params_, int num_samples_)
{
params = params_;
int divider = 1;
int w = params.width, h = params.height;
if(start_resolution != INT_MAX) {
while(w*h > start_resolution*start_resolution) {
w = max(1, w/2);
h = max(1, h/2);
divider *= 2;
}
}
num_samples = num_samples_;
state.buffer = BufferParams();
state.sample = -1;
state.num_tiles = 0;
state.num_rendered_tiles = 0;
state.num_samples = 0;
state.resolution_divider = divider;
state.tiles.clear();
}
void TileManager::set_samples(int num_samples_)
{
num_samples = num_samples_;
}
/* If sliced is false, splits image into tiles and assigns equal amount of tiles to every render device.
* If sliced is true, slice image into as much pieces as how many devices are rendering this image. */
int TileManager::gen_tiles(bool sliced)
{
int resolution = state.resolution_divider;
int image_w = max(1, params.width/resolution);
int image_h = max(1, params.height/resolution);
int2 center = make_int2(image_w/2, image_h/2);
state.tiles.clear();
int num_logical_devices = preserve_tile_device? num_devices: 1;
int num = min(image_h, num_logical_devices);
int slice_num = sliced? num: 1;
int tile_index = 0;
state.tiles.resize(num);
vector<list<Tile> >::iterator tile_list = state.tiles.begin();
for(int slice = 0; slice < slice_num; slice++) {
int slice_y = (image_h/slice_num)*slice;
int slice_h = (slice == slice_num-1)? image_h - slice*(image_h/slice_num): image_h/slice_num;
int tile_w = (tile_size.x >= image_w)? 1: (image_w + tile_size.x - 1)/tile_size.x;
int tile_h = (tile_size.y >= slice_h)? 1: (slice_h + tile_size.y - 1)/tile_size.y;
int tiles_per_device = (tile_w * tile_h + num - 1) / num;
int cur_device = 0, cur_tiles = 0;
for(int tile_y = 0; tile_y < tile_h; tile_y++) {
for(int tile_x = 0; tile_x < tile_w; tile_x++, tile_index++) {
int x = tile_x * tile_size.x;
int y = tile_y * tile_size.y;
int w = (tile_x == tile_w-1)? image_w - x: tile_size.x;
int h = (tile_y == tile_h-1)? slice_h - y: tile_size.y;
tile_list->push_back(Tile(tile_index, x, y + slice_y, w, h, sliced? slice: cur_device));
if(!sliced) {
cur_tiles++;
if(cur_tiles == tiles_per_device) {
tile_list->sort(TileComparator(tile_order, center));
tile_list++;
cur_tiles = 0;
cur_device++;
}
}
}
}
}
return tile_index;
}
void TileManager::set_tiles()
{
int resolution = state.resolution_divider;
int image_w = max(1, params.width/resolution);
int image_h = max(1, params.height/resolution);
state.num_tiles = gen_tiles(!background);
state.buffer.width = image_w;
state.buffer.height = image_h;
state.buffer.full_x = params.full_x/resolution;
state.buffer.full_y = params.full_y/resolution;
state.buffer.full_width = max(1, params.full_width/resolution);
state.buffer.full_height = max(1, params.full_height/resolution);
}
bool TileManager::next_tile(Tile& tile, int device)
{
int logical_device = preserve_tile_device? device: 0;
assert(logical_device < state.tiles.size());
if(state.tiles[logical_device].empty())
return false;
tile = state.tiles[logical_device].front();
state.tiles[logical_device].pop_front();
state.num_rendered_tiles++;
return true;
}
bool TileManager::done()
{
return (state.sample+state.num_samples >= num_samples && state.resolution_divider == 1);
}
bool TileManager::next()
{
if(done())
return false;
if(progressive && state.resolution_divider > 1) {
state.sample = 0;
state.resolution_divider /= 2;
state.num_samples = 1;
set_tiles();
}
else {
state.sample++;
if(progressive)
state.num_samples = 1;
else
state.num_samples = num_samples;
state.resolution_divider = 1;
set_tiles();
}
return true;
}
CCL_NAMESPACE_END