blender/intern/cycles/render/coverage.cpp
Stefan Werner e58c6cf0c6 Cycles: Added Cryptomatte output.
This allows for extra output passes that encode automatic object and material masks
for the entire scene. It is an implementation of the Cryptomatte standard as
introduced by Psyop. A good future extension would be to add a manifest to the
export and to do plenty of testing to ensure that it is fully compatible with other
renderers and compositing programs that use Cryptomatte.

Internally, it adds the ability for Cycles to have several passes of the same type
that are distinguished by their name.

Differential Revision: https://developer.blender.org/D3538
2018-10-28 05:37:41 -04:00

144 lines
4.7 KiB
C++

/*
* Copyright 2018 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/coverage.h"
#include "kernel/kernel_compat_cpu.h"
#include "kernel/split/kernel_split_data.h"
#include "kernel/kernel_globals.h"
#include "kernel/kernel_id_passes.h"
#include "kernel/kernel_types.h"
#include "util/util_map.h"
#include "util/util_vector.h"
CCL_NAMESPACE_BEGIN
static bool crypomatte_comp(const pair<float, float>& i, const pair<float, float> j) { return i.first > j.first; }
void Coverage::finalize()
{
int pass_offset = 0;
if(kernel_data.film.cryptomatte_passes & CRYPT_OBJECT) {
finalize_buffer(coverage_object, pass_offset);
pass_offset += kernel_data.film.cryptomatte_depth * 4;
}
if(kernel_data.film.cryptomatte_passes & CRYPT_MATERIAL) {
finalize_buffer(coverage_material, pass_offset);
pass_offset += kernel_data.film.cryptomatte_depth * 4;
}
if(kernel_data.film.cryptomatte_passes & CRYPT_ASSET) {
finalize_buffer(coverage_asset, pass_offset);
}
}
void Coverage::init_path_trace()
{
kg->coverage_object = kg->coverage_material = kg->coverage_asset = NULL;
if(kernel_data.film.cryptomatte_passes & CRYPT_ACCURATE) {
if(kernel_data.film.cryptomatte_passes & CRYPT_OBJECT) {
coverage_object.clear();
coverage_object.resize(tile.w * tile.h);
}
if(kernel_data.film.cryptomatte_passes & CRYPT_MATERIAL) {
coverage_material.clear();
coverage_material.resize(tile.w * tile.h);
}
if(kernel_data.film.cryptomatte_passes & CRYPT_ASSET) {
coverage_asset.clear();
coverage_asset.resize(tile.w * tile.h);
}
}
}
void Coverage::init_pixel(int x, int y)
{
if(kernel_data.film.cryptomatte_passes & CRYPT_ACCURATE) {
const int pixel_index = tile.w * (y - tile.y) + x - tile.x;
if(kernel_data.film.cryptomatte_passes & CRYPT_OBJECT) {
kg->coverage_object = &coverage_object[pixel_index];
}
if(kernel_data.film.cryptomatte_passes & CRYPT_MATERIAL) {
kg->coverage_material = &coverage_material[pixel_index];
}
if(kernel_data.film.cryptomatte_passes & CRYPT_ASSET) {
kg->coverage_asset = &coverage_asset[pixel_index];
}
}
}
void Coverage::finalize_buffer(vector<CoverageMap> & coverage, const int pass_offset)
{
if(kernel_data.film.cryptomatte_passes & CRYPT_ACCURATE) {
flatten_buffer(coverage, pass_offset);
}
else {
sort_buffer(pass_offset);
}
}
void Coverage::flatten_buffer(vector<CoverageMap> &coverage, const int pass_offset)
{
/* Sort the coverage map and write it to the output */
int pixel_index = 0;
int pass_stride = tile.buffers->params.get_passes_size();
for(int y = 0; y < tile.h; ++y) {
for(int x = 0; x < tile.w; ++x) {
const CoverageMap& pixel = coverage[pixel_index];
if(!pixel.empty()) {
/* buffer offset */
int index = x + y * tile.stride;
float *buffer = (float*)tile.buffer + index*pass_stride;
/* sort the cryptomatte pixel */
vector<pair<float, float> > sorted_pixel;
for(CoverageMap::const_iterator it = pixel.begin(); it != pixel.end(); ++it) {
sorted_pixel.push_back(std::make_pair(it->second, it->first));
}
sort(sorted_pixel.begin(), sorted_pixel.end(), crypomatte_comp);
int num_slots = 2 * (kernel_data.film.cryptomatte_depth);
if(sorted_pixel.size() > num_slots) {
float leftover = 0.0f;
for(vector<pair<float, float> >::iterator it = sorted_pixel.begin()+num_slots; it != sorted_pixel.end(); ++it) {
leftover += it->first;
}
sorted_pixel[num_slots-1].first += leftover;
}
int limit = min(num_slots, sorted_pixel.size());
for(int i = 0; i < limit; ++i) {
kernel_write_id_slots(buffer + kernel_data.film.pass_cryptomatte + pass_offset, 2 * (kernel_data.film.cryptomatte_depth), sorted_pixel[i].second, sorted_pixel[i].first);
}
}
++pixel_index;
}
}
}
void Coverage::sort_buffer(const int pass_offset)
{
/* Sort the coverage map and write it to the output */
int pass_stride = tile.buffers->params.get_passes_size();
for(int y = 0; y < tile.h; ++y) {
for(int x = 0; x < tile.w; ++x) {
/* buffer offset */
int index = x + y*tile.stride;
float *buffer = (float*)tile.buffer + index*pass_stride;
kernel_sort_id_slots(buffer + kernel_data.film.pass_cryptomatte + pass_offset, 2 * (kernel_data.film.cryptomatte_depth));
}
}
}
CCL_NAMESPACE_END