forked from bartvdbraak/blender
146ed67d55
Thanks for Aldo Zang for the help with the fix for the panorama/fisheye depth of field calculation and the overall math. Reviewed By: sergey, dingto Subscribers: juicyfruit, gregzaal, #cycles, dingto, matray Differential Revision: https://developer.blender.org/D753
313 lines
9.3 KiB
C
313 lines
9.3 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License
|
|
*/
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Perspective Camera */
|
|
|
|
ccl_device float2 camera_sample_aperture(KernelGlobals *kg, float u, float v)
|
|
{
|
|
float blades = kernel_data.cam.blades;
|
|
float2 bokeh;
|
|
|
|
if(blades == 0.0f) {
|
|
/* sample disk */
|
|
bokeh = concentric_sample_disk(u, v);
|
|
}
|
|
else {
|
|
/* sample polygon */
|
|
float rotation = kernel_data.cam.bladesrotation;
|
|
bokeh = regular_polygon_sample(blades, rotation, u, v);
|
|
}
|
|
|
|
/* anamorphic lens bokeh */
|
|
bokeh.x *= kernel_data.cam.inv_aperture_ratio;
|
|
|
|
return bokeh;
|
|
}
|
|
|
|
ccl_device void camera_sample_perspective(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, Ray *ray)
|
|
{
|
|
/* create ray form raster position */
|
|
Transform rastertocamera = kernel_data.cam.rastertocamera;
|
|
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
|
|
|
|
ray->P = make_float3(0.0f, 0.0f, 0.0f);
|
|
ray->D = Pcamera;
|
|
|
|
/* modify ray for depth of field */
|
|
float aperturesize = kernel_data.cam.aperturesize;
|
|
|
|
if(aperturesize > 0.0f) {
|
|
/* sample point on aperture */
|
|
float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;
|
|
|
|
/* compute point on plane of focus */
|
|
float ft = kernel_data.cam.focaldistance/ray->D.z;
|
|
float3 Pfocus = ray->D*ft;
|
|
|
|
/* update ray for effect of lens */
|
|
ray->P = make_float3(lensuv.x, lensuv.y, 0.0f);
|
|
ray->D = normalize(Pfocus - ray->P);
|
|
}
|
|
|
|
/* transform ray from camera to world */
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
if(kernel_data.cam.have_motion)
|
|
transform_motion_interpolate(&cameratoworld, (const DecompMotionTransform*)&kernel_data.cam.motion, ray->time);
|
|
#endif
|
|
|
|
ray->P = transform_point(&cameratoworld, ray->P);
|
|
ray->D = transform_direction(&cameratoworld, ray->D);
|
|
ray->D = normalize(ray->D);
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
/* ray differential */
|
|
float3 Ddiff = transform_direction(&cameratoworld, Pcamera);
|
|
|
|
ray->dP = differential3_zero();
|
|
|
|
ray->dD.dx = normalize(Ddiff + float4_to_float3(kernel_data.cam.dx)) - normalize(Ddiff);
|
|
ray->dD.dy = normalize(Ddiff + float4_to_float3(kernel_data.cam.dy)) - normalize(Ddiff);
|
|
#endif
|
|
|
|
#ifdef __CAMERA_CLIPPING__
|
|
/* clipping */
|
|
ray->P += kernel_data.cam.nearclip*ray->D;
|
|
ray->t = kernel_data.cam.cliplength;
|
|
#else
|
|
ray->t = FLT_MAX;
|
|
#endif
|
|
}
|
|
|
|
/* Orthographic Camera */
|
|
|
|
ccl_device void camera_sample_orthographic(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, Ray *ray)
|
|
{
|
|
/* create ray form raster position */
|
|
Transform rastertocamera = kernel_data.cam.rastertocamera;
|
|
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
|
|
|
|
ray->D = make_float3(0.0f, 0.0f, 1.0f);
|
|
|
|
/* modify ray for depth of field */
|
|
float aperturesize = kernel_data.cam.aperturesize;
|
|
|
|
if(aperturesize > 0.0f) {
|
|
/* sample point on aperture */
|
|
float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;
|
|
|
|
/* compute point on plane of focus */
|
|
float3 Pfocus = ray->D * kernel_data.cam.focaldistance;
|
|
|
|
/* update ray for effect of lens */
|
|
float3 lensuvw = make_float3(lensuv.x, lensuv.y, 0.0f);
|
|
ray->P = Pcamera + lensuvw;
|
|
ray->D = normalize(Pfocus - lensuvw);
|
|
}
|
|
else {
|
|
ray->P = Pcamera;
|
|
}
|
|
/* transform ray from camera to world */
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
if(kernel_data.cam.have_motion)
|
|
transform_motion_interpolate(&cameratoworld, (const DecompMotionTransform*)&kernel_data.cam.motion, ray->time);
|
|
#endif
|
|
|
|
ray->P = transform_point(&cameratoworld, ray->P);
|
|
ray->D = transform_direction(&cameratoworld, ray->D);
|
|
ray->D = normalize(ray->D);
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
/* ray differential */
|
|
ray->dP.dx = float4_to_float3(kernel_data.cam.dx);
|
|
ray->dP.dy = float4_to_float3(kernel_data.cam.dy);
|
|
|
|
ray->dD = differential3_zero();
|
|
#endif
|
|
|
|
#ifdef __CAMERA_CLIPPING__
|
|
/* clipping */
|
|
ray->t = kernel_data.cam.cliplength;
|
|
#else
|
|
ray->t = FLT_MAX;
|
|
#endif
|
|
}
|
|
|
|
/* Panorama Camera */
|
|
|
|
ccl_device void camera_sample_panorama(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, Ray *ray)
|
|
{
|
|
Transform rastertocamera = kernel_data.cam.rastertocamera;
|
|
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
|
|
|
|
/* create ray form raster position */
|
|
ray->P = make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
#ifdef __CAMERA_CLIPPING__
|
|
/* clipping */
|
|
ray->t = kernel_data.cam.cliplength;
|
|
#else
|
|
ray->t = FLT_MAX;
|
|
#endif
|
|
|
|
ray->D = panorama_to_direction(kg, Pcamera.x, Pcamera.y);
|
|
|
|
/* indicates ray should not receive any light, outside of the lens */
|
|
if(is_zero(ray->D)) {
|
|
ray->t = 0.0f;
|
|
return;
|
|
}
|
|
|
|
/* modify ray for depth of field */
|
|
float aperturesize = kernel_data.cam.aperturesize;
|
|
|
|
if(aperturesize > 0.0f) {
|
|
/* sample point on aperture */
|
|
float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;
|
|
|
|
/* compute point on plane of focus */
|
|
float3 D = normalize(ray->D);
|
|
float3 Pfocus = D * kernel_data.cam.focaldistance;
|
|
|
|
/* calculate orthonormal coordinates perpendicular to D */
|
|
float3 U, V;
|
|
U = normalize(make_float3(1.0f, 0.0f, 0.0f) - D.x * D);
|
|
V = normalize(cross(D, U));
|
|
|
|
/* update ray for effect of lens */
|
|
ray->P = U * lensuv.x + V * lensuv.y;
|
|
ray->D = normalize(Pfocus - ray->P);
|
|
}
|
|
|
|
/* transform ray from camera to world */
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
if(kernel_data.cam.have_motion)
|
|
transform_motion_interpolate(&cameratoworld, (const DecompMotionTransform*)&kernel_data.cam.motion, ray->time);
|
|
#endif
|
|
|
|
ray->P = transform_point(&cameratoworld, ray->P);
|
|
ray->D = transform_direction(&cameratoworld, ray->D);
|
|
ray->D = normalize(ray->D);
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
/* ray differential */
|
|
ray->dP = differential3_zero();
|
|
|
|
Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x + 1.0f, raster_y, 0.0f));
|
|
ray->dD.dx = normalize(transform_direction(&cameratoworld, panorama_to_direction(kg, Pcamera.x, Pcamera.y))) - ray->D;
|
|
|
|
Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y + 1.0f, 0.0f));
|
|
ray->dD.dy = normalize(transform_direction(&cameratoworld, panorama_to_direction(kg, Pcamera.x, Pcamera.y))) - ray->D;
|
|
#endif
|
|
}
|
|
|
|
/* Common */
|
|
|
|
ccl_device void camera_sample(KernelGlobals *kg, int x, int y, float filter_u, float filter_v,
|
|
float lens_u, float lens_v, float time, Ray *ray)
|
|
{
|
|
/* pixel filter */
|
|
int filter_table_offset = kernel_data.film.filter_table_offset;
|
|
float raster_x = x + lookup_table_read(kg, filter_u, filter_table_offset, FILTER_TABLE_SIZE);
|
|
float raster_y = y + lookup_table_read(kg, filter_v, filter_table_offset, FILTER_TABLE_SIZE);
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
/* motion blur */
|
|
if(kernel_data.cam.shuttertime == -1.0f)
|
|
ray->time = TIME_INVALID;
|
|
else
|
|
ray->time = time;
|
|
#endif
|
|
|
|
/* sample */
|
|
if(kernel_data.cam.type == CAMERA_PERSPECTIVE)
|
|
camera_sample_perspective(kg, raster_x, raster_y, lens_u, lens_v, ray);
|
|
else if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
|
|
camera_sample_orthographic(kg, raster_x, raster_y, lens_u, lens_v, ray);
|
|
else
|
|
camera_sample_panorama(kg, raster_x, raster_y, lens_u, lens_v, ray);
|
|
}
|
|
|
|
/* Utilities */
|
|
|
|
ccl_device_inline float3 camera_position(KernelGlobals *kg)
|
|
{
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
return make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
|
|
}
|
|
|
|
ccl_device_inline float camera_distance(KernelGlobals *kg, float3 P)
|
|
{
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
|
|
|
|
if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
|
|
float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
|
|
return fabsf(dot((P - camP), camD));
|
|
}
|
|
else
|
|
return len(P - camP);
|
|
}
|
|
|
|
ccl_device_inline float3 camera_direction_from_point(KernelGlobals *kg, float3 P)
|
|
{
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
|
|
if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
|
|
float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
|
|
return -camD;
|
|
}
|
|
else {
|
|
float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
|
|
return normalize(camP - P);
|
|
}
|
|
}
|
|
|
|
ccl_device_inline float3 camera_world_to_ndc(KernelGlobals *kg, ShaderData *sd, float3 P)
|
|
{
|
|
if(kernel_data.cam.type != CAMERA_PANORAMA) {
|
|
/* perspective / ortho */
|
|
if(sd->object == PRIM_NONE && kernel_data.cam.type == CAMERA_PERSPECTIVE)
|
|
P += camera_position(kg);
|
|
|
|
Transform tfm = kernel_data.cam.worldtondc;
|
|
return transform_perspective(&tfm, P);
|
|
}
|
|
else {
|
|
/* panorama */
|
|
Transform tfm = kernel_data.cam.worldtocamera;
|
|
|
|
if(sd->object != OBJECT_NONE)
|
|
P = normalize(transform_point(&tfm, P));
|
|
else
|
|
P = normalize(transform_direction(&tfm, P));
|
|
|
|
float2 uv = direction_to_panorama(kg, P);
|
|
|
|
return make_float3(uv.x, uv.y, 0.0f);
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|