blender/intern/cycles/kernel/svm/svm_tex_coord.h
George Kyriazis 7f4479da42 Cycles: OpenCL kernel split
This commit contains all the work related on the AMD megakernel split work
which was mainly done by Varun Sundar, George Kyriazis and Lenny Wang, plus
some help from Sergey Sharybin, Martijn Berger, Thomas Dinges and likely
someone else which we're forgetting to mention.

Currently only AMD cards are enabled for the new split kernel, but it is
possible to force split opencl kernel to be used by setting the following
environment variable: CYCLES_OPENCL_SPLIT_KERNEL_TEST=1.

Not all the features are supported yet, and that being said no motion blur,
camera blur, SSS and volumetrics for now. Also transparent shadows are
disabled on AMD device because of some compiler bug.

This kernel is also only implements regular path tracing and supporting
branched one will take a bit. Branched path tracing is exposed to the
interface still, which is a bit misleading and will be hidden there soon.

More feature will be enabled once they're ported to the split kernel and
tested.

Neither regular CPU nor CUDA has any difference, they're generating the
same exact code, which means no regressions/improvements there.

Based on the research paper:

  https://research.nvidia.com/sites/default/files/publications/laine2013hpg_paper.pdf

Here's the documentation:

  https://docs.google.com/document/d/1LuXW-CV-sVJkQaEGZlMJ86jZ8FmoPfecaMdR-oiWbUY/edit

Design discussion of the patch:

  https://developer.blender.org/T44197

Differential Revision: https://developer.blender.org/D1200
2015-05-09 19:52:40 +05:00

389 lines
12 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* Texture Coordinate Node */
ccl_device void svm_node_tex_coord(KernelGlobals *kg,
ShaderData *sd,
int path_flag,
float *stack,
uint4 node,
int *offset)
{
float3 data;
uint type = node.y;
uint out_offset = node.z;
switch(type) {
case NODE_TEXCO_OBJECT: {
data = ccl_fetch(sd, P);
if(node.w == 0) {
if(ccl_fetch(sd, object) != OBJECT_NONE) {
object_inverse_position_transform(kg, sd, &data);
}
}
else {
Transform tfm;
tfm.x = read_node_float(kg, offset);
tfm.y = read_node_float(kg, offset);
tfm.z = read_node_float(kg, offset);
tfm.w = read_node_float(kg, offset);
data = transform_point(&tfm, data);
}
break;
}
case NODE_TEXCO_NORMAL: {
data = ccl_fetch(sd, N);
if(ccl_fetch(sd, object) != OBJECT_NONE)
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = transform_point(&tfm, ccl_fetch(sd, P));
else
data = transform_point(&tfm, ccl_fetch(sd, P) + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if((path_flag & PATH_RAY_CAMERA) && ccl_fetch(sd, object) == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, ray_P));
else
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, P));
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = 2.0f*dot(ccl_fetch(sd, N), ccl_fetch(sd, I))*ccl_fetch(sd, N) - ccl_fetch(sd, I);
else
data = ccl_fetch(sd, I);
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, ccl_fetch(sd, object));
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, ccl_fetch(sd, object));
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = ccl_fetch(sd, P);
#ifdef __VOLUME__
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
#endif
break;
}
}
stack_store_float3(stack, out_offset, data);
}
ccl_device void svm_node_tex_coord_bump_dx(KernelGlobals *kg,
ShaderData *sd,
int path_flag,
float *stack,
uint4 node,
int *offset)
{
#ifdef __RAY_DIFFERENTIALS__
float3 data;
uint type = node.y;
uint out_offset = node.z;
switch(type) {
case NODE_TEXCO_OBJECT: {
data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx;
if(node.w == 0) {
if(ccl_fetch(sd, object) != OBJECT_NONE) {
object_inverse_position_transform(kg, sd, &data);
}
}
else {
Transform tfm;
tfm.x = read_node_float(kg, offset);
tfm.y = read_node_float(kg, offset);
tfm.z = read_node_float(kg, offset);
tfm.w = read_node_float(kg, offset);
data = transform_point(&tfm, data);
}
break;
}
case NODE_TEXCO_NORMAL: {
data = ccl_fetch(sd, N);
if(ccl_fetch(sd, object) != OBJECT_NONE)
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx);
else
data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if((path_flag & PATH_RAY_CAMERA) && ccl_fetch(sd, object) == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, ray_P) + ccl_fetch(sd, ray_dP).dx);
else
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = 2.0f*dot(ccl_fetch(sd, N), ccl_fetch(sd, I))*ccl_fetch(sd, N) - ccl_fetch(sd, I);
else
data = ccl_fetch(sd, I);
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, ccl_fetch(sd, object));
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, ccl_fetch(sd, object));
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx;
#ifdef __VOLUME__
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
#endif
break;
}
}
stack_store_float3(stack, out_offset, data);
#else
svm_node_tex_coord(kg, sd, path_flag, stack, node, offset);
#endif
}
ccl_device void svm_node_tex_coord_bump_dy(KernelGlobals *kg,
ShaderData *sd,
int path_flag,
float *stack,
uint4 node,
int *offset)
{
#ifdef __RAY_DIFFERENTIALS__
float3 data;
uint type = node.y;
uint out_offset = node.z;
switch(type) {
case NODE_TEXCO_OBJECT: {
data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy;
if(node.w == 0) {
if(ccl_fetch(sd, object) != OBJECT_NONE) {
object_inverse_position_transform(kg, sd, &data);
}
}
else {
Transform tfm;
tfm.x = read_node_float(kg, offset);
tfm.y = read_node_float(kg, offset);
tfm.z = read_node_float(kg, offset);
tfm.w = read_node_float(kg, offset);
data = transform_point(&tfm, data);
}
break;
}
case NODE_TEXCO_NORMAL: {
data = ccl_fetch(sd, N);
if(ccl_fetch(sd, object) != OBJECT_NONE)
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy);
else
data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if((path_flag & PATH_RAY_CAMERA) && ccl_fetch(sd, object) == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, ray_P) + ccl_fetch(sd, ray_dP).dy);
else
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = 2.0f*dot(ccl_fetch(sd, N), ccl_fetch(sd, I))*ccl_fetch(sd, N) - ccl_fetch(sd, I);
else
data = ccl_fetch(sd, I);
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, ccl_fetch(sd, object));
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, ccl_fetch(sd, object));
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy;
#ifdef __VOLUME__
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
#endif
break;
}
}
stack_store_float3(stack, out_offset, data);
#else
svm_node_tex_coord(kg, sd, path_flag, stack, node, offset);
#endif
}
ccl_device void svm_node_normal_map(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint color_offset, strength_offset, normal_offset, space;
decode_node_uchar4(node.y, &color_offset, &strength_offset, &normal_offset, &space);
float3 color = stack_load_float3(stack, color_offset);
color = 2.0f*make_float3(color.x - 0.5f, color.y - 0.5f, color.z - 0.5f);
float3 N;
if(space == NODE_NORMAL_MAP_TANGENT) {
/* tangent space */
if(ccl_fetch(sd, object) == OBJECT_NONE) {
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
return;
}
/* first try to get tangent attribute */
AttributeElement attr_elem, attr_sign_elem, attr_normal_elem;
int attr_offset = find_attribute(kg, sd, node.z, &attr_elem);
int attr_sign_offset = find_attribute(kg, sd, node.w, &attr_sign_elem);
int attr_normal_offset = find_attribute(kg, sd, ATTR_STD_VERTEX_NORMAL, &attr_normal_elem);
if(attr_offset == ATTR_STD_NOT_FOUND || attr_sign_offset == ATTR_STD_NOT_FOUND || attr_normal_offset == ATTR_STD_NOT_FOUND) {
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
return;
}
/* get _unnormalized_ interpolated normal and tangent */
float3 tangent = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
float sign = primitive_attribute_float(kg, sd, attr_sign_elem, attr_sign_offset, NULL, NULL);
float3 normal;
if(ccl_fetch(sd, shader) & SHADER_SMOOTH_NORMAL) {
normal = primitive_attribute_float3(kg, sd, attr_normal_elem, attr_normal_offset, NULL, NULL);
}
else {
normal = ccl_fetch(sd, Ng);
object_inverse_normal_transform(kg, sd, &normal);
}
/* apply normal map */
float3 B = sign * cross(normal, tangent);
N = normalize(color.x * tangent + color.y * B + color.z * normal);
/* transform to world space */
object_normal_transform(kg, sd, &N);
}
else {
/* strange blender convention */
if(space == NODE_NORMAL_MAP_BLENDER_OBJECT || space == NODE_NORMAL_MAP_BLENDER_WORLD) {
color.y = -color.y;
color.z = -color.z;
}
/* object, world space */
N = color;
if(space == NODE_NORMAL_MAP_OBJECT || space == NODE_NORMAL_MAP_BLENDER_OBJECT)
object_normal_transform(kg, sd, &N);
else
N = normalize(N);
}
float strength = stack_load_float(stack, strength_offset);
if(strength != 1.0f) {
strength = max(strength, 0.0f);
N = normalize(ccl_fetch(sd, N) + (N - ccl_fetch(sd, N))*strength);
}
stack_store_float3(stack, normal_offset, N);
}
ccl_device void svm_node_tangent(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint tangent_offset, direction_type, axis;
decode_node_uchar4(node.y, &tangent_offset, &direction_type, &axis, NULL);
float3 tangent;
if(direction_type == NODE_TANGENT_UVMAP) {
/* UV map */
AttributeElement attr_elem;
int attr_offset = find_attribute(kg, sd, node.z, &attr_elem);
if(attr_offset == ATTR_STD_NOT_FOUND)
tangent = make_float3(0.0f, 0.0f, 0.0f);
else
tangent = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
}
else {
/* radial */
AttributeElement attr_elem;
int attr_offset = find_attribute(kg, sd, node.z, &attr_elem);
float3 generated;
if(attr_offset == ATTR_STD_NOT_FOUND)
generated = ccl_fetch(sd, P);
else
generated = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
if(axis == NODE_TANGENT_AXIS_X)
tangent = make_float3(0.0f, -(generated.z - 0.5f), (generated.y - 0.5f));
else if(axis == NODE_TANGENT_AXIS_Y)
tangent = make_float3(-(generated.z - 0.5f), 0.0f, (generated.x - 0.5f));
else
tangent = make_float3(-(generated.y - 0.5f), (generated.x - 0.5f), 0.0f);
}
object_normal_transform(kg, sd, &tangent);
tangent = cross(ccl_fetch(sd, N), normalize(cross(tangent, ccl_fetch(sd, N))));
stack_store_float3(stack, tangent_offset, tangent);
}
CCL_NAMESPACE_END