blender/intern/cycles/kernel/kernel_accumulate.h
Lukas Toenne ab4b74f1ed Cycles compiler fixes related to OSL changes:
* reverted r50430
* removed 2 util_params.h includes from r50428, these were causing trouble with OIIO in CUDA compilation. The purpose of these was to define the ustring type, but can just use the standard string type from util_string as well.
2012-09-06 07:44:49 +00:00

352 lines
9.5 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
/* BSDF Eval
*
* BSDF evaluation result, split per BSDF type. This is used to accumulate
* render passes separately. */
__device_inline void bsdf_eval_init(BsdfEval *eval, ClosureType type, float3 value, int use_light_pass)
{
#ifdef __PASSES__
eval->use_light_pass = use_light_pass;
if(eval->use_light_pass) {
eval->diffuse = make_float3(0.0f, 0.0f, 0.0f);
eval->glossy = make_float3(0.0f, 0.0f, 0.0f);
eval->transmission = make_float3(0.0f, 0.0f, 0.0f);
eval->transparent = make_float3(0.0f, 0.0f, 0.0f);
if(type == CLOSURE_BSDF_TRANSPARENT_ID)
eval->transparent = value;
else if(CLOSURE_IS_BSDF_DIFFUSE(type))
eval->diffuse = value;
else if(CLOSURE_IS_BSDF_GLOSSY(type))
eval->glossy = value;
else
eval->transmission = value;
}
else
eval->diffuse = value;
#else
*eval = value;
#endif
}
__device_inline void bsdf_eval_accum(BsdfEval *eval, ClosureType type, float3 value)
{
#ifdef __PASSES__
if(eval->use_light_pass) {
if(CLOSURE_IS_BSDF_DIFFUSE(type))
eval->diffuse += value;
else if(CLOSURE_IS_BSDF_GLOSSY(type))
eval->glossy += value;
else
eval->transmission += value;
/* skipping transparent, this function is used by for eval(), will be zero then */
}
else
eval->diffuse += value;
#else
*eval += value;
#endif
}
__device_inline bool bsdf_eval_is_zero(BsdfEval *eval)
{
#ifdef __PASSES__
if(eval->use_light_pass) {
return is_zero(eval->diffuse)
&& is_zero(eval->glossy)
&& is_zero(eval->transmission)
&& is_zero(eval->transparent);
}
else
return is_zero(eval->diffuse);
#else
return is_zero(*eval);
#endif
}
__device_inline void bsdf_eval_mul(BsdfEval *eval, float3 value)
{
#ifdef __PASSES__
if(eval->use_light_pass) {
eval->diffuse *= value;
eval->glossy *= value;
eval->transmission *= value;
/* skipping transparent, this function is used by for eval(), will be zero then */
}
else
eval->diffuse *= value;
#else
*eval *= value;
#endif
}
/* Path Radiance
*
* We accumulate different render passes separately. After summing at the end
* to get the combined result, it should be identical. We definte directly
* visible as the first non-transparent hit, while indirectly visible are the
* bounces after that. */
__device_inline void path_radiance_init(PathRadiance *L, int use_light_pass)
{
/* clear all */
#ifdef __PASSES__
L->use_light_pass = use_light_pass;
if(use_light_pass) {
L->indirect = make_float3(0.0f, 0.0f, 0.0f);
L->direct_throughput = make_float3(0.0f, 0.0f, 0.0f);
L->direct_emission = make_float3(0.0f, 0.0f, 0.0f);
L->color_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->color_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->color_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->direct_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->direct_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->direct_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->emission = make_float3(0.0f, 0.0f, 0.0f);
L->background = make_float3(0.0f, 0.0f, 0.0f);
L->ao = make_float3(0.0f, 0.0f, 0.0f);
L->shadow = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
}
else
L->emission = make_float3(0.0f, 0.0f, 0.0f);
#else
*L = make_float3(0.0f, 0.0f, 0.0f);
#endif
}
__device_inline void path_radiance_bsdf_bounce(PathRadiance *L, float3 *throughput,
BsdfEval *bsdf_eval, float bsdf_pdf, int bounce, int bsdf_label)
{
float inverse_pdf = 1.0f/bsdf_pdf;
#ifdef __PASSES__
if(L->use_light_pass) {
if(bounce == 0 && !(bsdf_label & LABEL_TRANSPARENT)) {
/* first on directly visible surface */
float3 value = *throughput*inverse_pdf;
L->indirect_diffuse = bsdf_eval->diffuse*value;
L->indirect_glossy = bsdf_eval->glossy*value;
L->indirect_transmission = bsdf_eval->transmission*value;
*throughput = L->indirect_diffuse + L->indirect_glossy + L->indirect_transmission;
L->direct_throughput = *throughput;
}
else {
/* transparent bounce before first hit, or indirectly visible through BSDF */
float3 sum = (bsdf_eval->diffuse + bsdf_eval->glossy + bsdf_eval->transmission + bsdf_eval->transparent)*inverse_pdf;
*throughput *= sum;
}
}
else
*throughput *= bsdf_eval->diffuse*inverse_pdf;
#else
*throughput *= *bsdf_eval*inverse_pdf;
#endif
}
__device_inline void path_radiance_accum_emission(PathRadiance *L, float3 throughput, float3 value, int bounce)
{
#ifdef __PASSES__
if(L->use_light_pass) {
if(bounce == 0)
L->emission += throughput*value;
else if(bounce == 1)
L->direct_emission += throughput*value;
else
L->indirect += throughput*value;
}
else
L->emission += throughput*value;
#else
*L += throughput*value;
#endif
}
__device_inline void path_radiance_accum_ao(PathRadiance *L, float3 throughput, float3 bsdf, float3 ao, int bounce)
{
#ifdef __PASSES__
if(L->use_light_pass) {
if(bounce == 0) {
/* directly visible lighting */
L->direct_diffuse += throughput*bsdf*ao;
L->ao += throughput*ao;
}
else {
/* indirectly visible lighting after BSDF bounce */
L->indirect += throughput*bsdf*ao;
}
}
else
L->emission += throughput*bsdf*ao;
#else
*L += throughput*bsdf*ao;
#endif
}
__device_inline void path_radiance_accum_light(PathRadiance *L, float3 throughput, BsdfEval *bsdf_eval, float3 shadow, int bounce, bool is_lamp)
{
#ifdef __PASSES__
if(L->use_light_pass) {
if(bounce == 0) {
/* directly visible lighting */
L->direct_diffuse += throughput*bsdf_eval->diffuse*shadow;
L->direct_glossy += throughput*bsdf_eval->glossy*shadow;
L->direct_transmission += throughput*bsdf_eval->transmission*shadow;
if(is_lamp) {
float3 sum = throughput*(bsdf_eval->diffuse + bsdf_eval->glossy + bsdf_eval->transmission);
L->shadow.x += shadow.x;
L->shadow.y += shadow.y;
L->shadow.z += shadow.z;
L->shadow.w += average(sum);
}
}
else {
/* indirectly visible lighting after BSDF bounce */
float3 sum = bsdf_eval->diffuse + bsdf_eval->glossy + bsdf_eval->transmission;
L->indirect += throughput*sum*shadow;
}
}
else
L->emission += throughput*bsdf_eval->diffuse*shadow;
#else
*L += throughput*(*bsdf_eval)*shadow;
#endif
}
__device_inline void path_radiance_accum_background(PathRadiance *L, float3 throughput, float3 value, int bounce)
{
#ifdef __PASSES__
if(L->use_light_pass) {
if(bounce == 0)
L->background += throughput*value;
else if(bounce == 1)
L->direct_emission += throughput*value;
else
L->indirect += throughput*value;
}
else
L->emission += throughput*value;
#else
*L += throughput*value;
#endif
}
__device_inline float3 path_radiance_sum(KernelGlobals *kg, PathRadiance *L)
{
#ifdef __PASSES__
if(L->use_light_pass) {
/* this division is a bit ugly, but means we only have to keep track of
* only a single throughput further along the path, here we recover just
* the indirect parth that is not influenced by any particular BSDF type */
L->direct_emission = safe_divide_color(L->direct_emission, L->direct_throughput);
L->direct_diffuse += L->indirect_diffuse*L->direct_emission;
L->direct_glossy += L->indirect_glossy*L->direct_emission;
L->direct_transmission += L->indirect_transmission*L->direct_emission;
L->indirect = safe_divide_color(L->indirect, L->direct_throughput);
L->indirect_diffuse *= L->indirect;
L->indirect_glossy *= L->indirect;
L->indirect_transmission *= L->indirect;
float3 L_sum = L->emission
+ L->direct_diffuse + L->direct_glossy + L->direct_transmission
+ L->indirect_diffuse + L->indirect_glossy + L->indirect_transmission;
if(!kernel_data.background.transparent)
L_sum += L->background;
return L_sum;
}
else
return L->emission;
#else
return *L;
#endif
}
__device_inline void path_radiance_clamp(PathRadiance *L, float3 *L_sum, float clamp)
{
#ifdef __OSL__
using std::isfinite;
#endif
float sum = fabsf((*L_sum).x) + fabsf((*L_sum).y) + fabsf((*L_sum).z);
if(!isfinite(sum)) {
/* invalid value, reject */
*L_sum = make_float3(0.0f, 0.0f, 0.0f);
#ifdef __PASSES__
if(L->use_light_pass) {
L->direct_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->direct_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->direct_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->emission = make_float3(0.0f, 0.0f, 0.0f);
}
#endif
}
else if(sum > clamp) {
/* value to high, scale down */
float scale = clamp/sum;
*L_sum *= scale;
#ifdef __PASSES__
if(L->use_light_pass) {
L->direct_diffuse *= scale;
L->direct_glossy *= scale;
L->direct_transmission *= scale;
L->indirect_diffuse *= scale;
L->indirect_glossy *= scale;
L->indirect_transmission *= scale;
L->emission *= scale;
}
#endif
}
}
CCL_NAMESPACE_END