blender/intern/cycles/bvh/bvh_sort.cpp
Sergey Sharybin b03e66e75f Cycles: Implement unaligned nodes BVH builder
This is a special builder type which is allowed to orient nodes to
strands direction, hence minimizing their surface area in comparison
with axis-aligned nodes. Such nodes are much more efficient for hair
rendering.

Implementation of BVH builder is based on Embree, and generally idea
there is to calculate axis-aligned SAH and oriented SAH and if SAH
of oriented node is smaller than axis-aligned SAH we create unaligned
node.

We store both aligned and unaligned nodes in the same tree (which
seems to be different from what Embree is doing) so we don't have
any any extra calculations needed to set up hair ray for BVH
traversal, hence avoiding any possible negative effect of this new
BVH nodes type.

This new builder is currently not in use, still need to make BVH
traversal code aware of unaligned nodes.
2016-07-07 17:25:48 +02:00

205 lines
6.1 KiB
C++

/*
* Adapted from code copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh_build.h"
#include "bvh_sort.h"
#include "util_algorithm.h"
#include "util_debug.h"
#include "util_task.h"
CCL_NAMESPACE_BEGIN
static const int BVH_SORT_THRESHOLD = 4096;
struct BVHReferenceCompare {
public:
int dim;
const BVHUnaligned *unaligned_heuristic;
const Transform *aligned_space;
BVHReferenceCompare(int dim,
const BVHUnaligned *unaligned_heuristic,
const Transform *aligned_space)
: dim(dim),
unaligned_heuristic(unaligned_heuristic),
aligned_space(aligned_space)
{
}
__forceinline BoundBox get_prim_bounds(const BVHReference& prim) const
{
return (aligned_space != NULL)
? unaligned_heuristic->compute_aligned_prim_boundbox(
prim, *aligned_space)
: prim.bounds();
}
/* Compare two references.
*
* Returns value is similar to return value of strcmp().
*/
__forceinline int compare(const BVHReference& ra,
const BVHReference& rb) const
{
BoundBox ra_bounds = get_prim_bounds(ra),
rb_bounds = get_prim_bounds(rb);
float ca = ra_bounds.min[dim] + ra_bounds.max[dim];
float cb = rb_bounds.min[dim] + rb_bounds.max[dim];
if(ca < cb) return -1;
else if(ca > cb) return 1;
else if(ra.prim_object() < rb.prim_object()) return -1;
else if(ra.prim_object() > rb.prim_object()) return 1;
else if(ra.prim_index() < rb.prim_index()) return -1;
else if(ra.prim_index() > rb.prim_index()) return 1;
else if(ra.prim_type() < rb.prim_type()) return -1;
else if(ra.prim_type() > rb.prim_type()) return 1;
return 0;
}
bool operator()(const BVHReference& ra, const BVHReference& rb)
{
return (compare(ra, rb) < 0);
}
};
static void bvh_reference_sort_threaded(TaskPool *task_pool,
BVHReference *data,
const int job_start,
const int job_end,
const BVHReferenceCompare& compare);
class BVHSortTask : public Task {
public:
BVHSortTask(TaskPool *task_pool,
BVHReference *data,
const int job_start,
const int job_end,
const BVHReferenceCompare& compare)
{
run = function_bind(bvh_reference_sort_threaded,
task_pool,
data,
job_start,
job_end,
compare);
}
};
/* Multi-threaded reference sort. */
static void bvh_reference_sort_threaded(TaskPool *task_pool,
BVHReference *data,
const int job_start,
const int job_end,
const BVHReferenceCompare& compare)
{
int start = job_start, end = job_end;
bool have_work = (start < end);
while(have_work) {
const int count = job_end - job_start;
if(count < BVH_SORT_THRESHOLD) {
/* Number of reference low enough, faster to finish the job
* in one thread rather than to spawn more threads.
*/
sort(data+job_start, data+job_end+1, compare);
break;
}
/* Single QSort step.
* Use median-of-three method for the pivot point.
*/
int left = start, right = end;
int center = (left + right) >> 1;
if(compare.compare(data[left], data[center]) > 0) {
swap(data[left], data[center]);
}
if(compare.compare(data[left], data[right]) > 0) {
swap(data[left], data[right]);
}
if(compare.compare(data[center], data[right]) > 0) {
swap(data[center], data[right]);
}
swap(data[center], data[right - 1]);
BVHReference median = data[right - 1];
do {
while(compare.compare(data[left], median) < 0) {
++left;
}
while(compare.compare(data[right], median) > 0) {
--right;
}
if(left <= right) {
swap(data[left], data[right]);
++left;
--right;
}
} while(left <= right);
/* We only create one new task here to reduce downside effects of
* latency in TaskScheduler.
* So generally current thread keeps working on the left part of the
* array, and we create new task for the right side.
* However, if there's nothing to be done in the left side of the array
* we don't create any tasks and make it so current thread works on the
* right side.
*/
have_work = false;
if(left < end) {
if(start < right) {
task_pool->push(new BVHSortTask(task_pool,
data,
left, end,
compare), true);
}
else {
start = left;
have_work = true;
}
}
if(start < right) {
end = right;
have_work = true;
}
}
}
void bvh_reference_sort(int start,
int end,
BVHReference *data,
int dim,
const BVHUnaligned *unaligned_heuristic,
const Transform *aligned_space)
{
const int count = end - start;
BVHReferenceCompare compare(dim, unaligned_heuristic, aligned_space);
if(count < BVH_SORT_THRESHOLD) {
/* It is important to not use any mutex if array is small enough,
* otherwise we end up in situation when we're going to sleep far
* too often.
*/
sort(data+start, data+end, compare);
}
else {
TaskPool task_pool;
bvh_reference_sort_threaded(&task_pool, data, start, end - 1, compare);
task_pool.wait_work();
}
}
CCL_NAMESPACE_END