blender/extern/bullet/Bullet/NarrowPhaseCollision/BU_Screwing.cpp
Erwin Coumans 281f236e6e Minor changes in Bullet:
- on Ton's request use double versions of cos,sin,tan, sqrt etc.
just like Solid in MT_Scalar #if defined (__sun) || defined (__sun__) || defined (__sparc) || defined (__APPLE__)
- updated an url in the header of files
2005-10-30 06:44:42 +00:00

198 lines
4.4 KiB
C++

/*
* Copyright (c) 2005 Stephane Redon / Erwin Coumans http://continuousphysics.com/Bullet/
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies.
* Erwin Coumans makes no representations about the suitability
* of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*/
#include "BU_Screwing.h"
BU_Screwing::BU_Screwing(const SimdVector3& relLinVel,const SimdVector3& relAngVel) {
const SimdScalar dx=relLinVel[0];
const SimdScalar dy=relLinVel[1];
const SimdScalar dz=relLinVel[2];
const SimdScalar wx=relAngVel[0];
const SimdScalar wy=relAngVel[1];
const SimdScalar wz=relAngVel[2];
// Compute the screwing parameters :
// w : total amount of rotation
// s : total amount of translation
// u : vector along the screwing axis (||u||=1)
// o : point on the screwing axis
m_w=SimdSqrt(wx*wx+wy*wy+wz*wz);
//if (!w) {
if (fabs(m_w)<SCREWEPSILON ) {
assert(m_w == 0.f);
m_w=0.;
m_s=SimdSqrt(dx*dx+dy*dy+dz*dz);
if (fabs(m_s)<SCREWEPSILON ) {
assert(m_s == 0.);
m_s=0.;
m_u=SimdPoint3(0.,0.,1.);
m_o=SimdPoint3(0.,0.,0.);
}
else {
float t=1.f/m_s;
m_u=SimdPoint3(dx*t,dy*t,dz*t);
m_o=SimdPoint3(0.f,0.f,0.f);
}
}
else { // there is some rotation
// we compute u
float v(1.f/m_w);
m_u=SimdPoint3(wx*v,wy*v,wz*v); // normalization
// decomposition of the translation along u and one orthogonal vector
SimdPoint3 t(dx,dy,dz);
m_s=t.dot(m_u); // component along u
if (fabs(m_s)<SCREWEPSILON)
{
//printf("m_s component along u < SCREWEPSILION\n");
m_s=0.f;
}
SimdPoint3 n1(t-(m_s*m_u)); // the remaining part (which is orthogonal to u)
// now we have to compute o
SimdScalar len = n1.length2();
//(len >= BUM_EPSILON2) {
if (n1[0] || n1[1] || n1[2]) { // n1 is not the zero vector
n1.normalize();
SimdVector3 n1orth=m_u.cross(n1);
float n2x=SimdCos(0.5f*m_w);
float n2y=SimdSin(0.5f*m_w);
m_o=0.5f*t.dot(n1)*(n1+n2x/n2y*n1orth);
}
else
{
m_o=SimdPoint3(0.f,0.f,0.f);
}
}
}
//Then, I need to compute Pa, the matrix from the reference (global) frame to
//the screwing frame :
void BU_Screwing::LocalMatrix(SimdTransform &t) const {
//So the whole computations do this : align the Oz axis along the
// screwing axis (thanks to u), and then find two others orthogonal axes to
// complete the basis.
if ((m_u[0]>SCREWEPSILON)||(m_u[0]<-SCREWEPSILON)||(m_u[1]>SCREWEPSILON)||(m_u[1]<-SCREWEPSILON))
{
// to avoid numerical problems
float n=SimdSqrt(m_u[0]*m_u[0]+m_u[1]*m_u[1]);
float invn=1.0f/n;
SimdMatrix3x3 mat;
mat[0][0]=-m_u[1]*invn;
mat[0][1]=m_u[0]*invn;
mat[0][2]=0.f;
mat[1][0]=-m_u[0]*invn*m_u[2];
mat[1][1]=-m_u[1]*invn*m_u[2];
mat[1][2]=n;
mat[2][0]=m_u[0];
mat[2][1]=m_u[1];
mat[2][2]=m_u[2];
t.setOrigin(SimdPoint3(
m_o[0]*m_u[1]*invn-m_o[1]*m_u[0]*invn,
-(m_o[0]*mat[1][0]+m_o[1]*mat[1][1]+m_o[2]*n),
-(m_o[0]*m_u[0]+m_o[1]*m_u[1]+m_o[2]*m_u[2])));
t.setBasis(mat);
}
else {
SimdMatrix3x3 m;
m[0][0]=1.;
m[1][0]=0.;
m[2][0]=0.;
m[0][1]=0.f;
m[1][1]=float(SimdSign(m_u[2]));
m[2][1]=0.f;
m[0][2]=0.f;
m[1][2]=0.f;
m[2][2]=float(SimdSign(m_u[2]));
t.setOrigin(SimdPoint3(
-m_o[0],
-SimdSign(m_u[2])*m_o[1],
-SimdSign(m_u[2])*m_o[2]
));
t.setBasis(m);
}
}
//gives interpolated transform for time in [0..1] in screwing frame
SimdTransform BU_Screwing::InBetweenTransform(const SimdTransform& tr,SimdScalar t) const
{
SimdPoint3 org = tr.getOrigin();
SimdPoint3 neworg (
org.x()*SimdCos(m_w*t)-org.y()*SimdSin(m_w*t),
org.x()*SimdSin(m_w*t)+org.y()*SimdCos(m_w*t),
org.z()+m_s*CalculateF(t));
SimdTransform newtr;
newtr.setOrigin(neworg);
SimdMatrix3x3 basis = tr.getBasis();
SimdMatrix3x3 basisorg = tr.getBasis();
SimdQuaternion rot(SimdVector3(0.,0.,1.),m_w*t);
SimdQuaternion tmpOrn;
tr.getBasis().getRotation(tmpOrn);
rot = rot * tmpOrn;
//to avoid numerical drift, normalize quaternion
rot.normalize();
newtr.setBasis(SimdMatrix3x3(rot));
return newtr;
}
SimdScalar BU_Screwing::CalculateF(SimdScalar t) const
{
SimdScalar result;
if (!m_w)
{
result = t;
} else
{
result = ( SimdTan((m_w*t)/2.f) / SimdTan(m_w/2.f));
}
return result;
}