blender/extern/carve/lib/polyhedron.cpp
Sergey Sharybin f82f1513e0 Booleans: Boost is no longer a dependency for Carve
SCons is currently broken on my laptop, so can't test if it works for sure,
so please do tests of that.
2014-11-13 18:26:21 +05:00

1108 lines
36 KiB
C++

// Begin License:
// Copyright (C) 2006-2014 Tobias Sargeant (tobias.sargeant@gmail.com).
// All rights reserved.
//
// This file is part of the Carve CSG Library (http://carve-csg.com/)
//
// This file may be used under the terms of either the GNU General
// Public License version 2 or 3 (at your option) as published by the
// Free Software Foundation and appearing in the files LICENSE.GPL2
// and LICENSE.GPL3 included in the packaging of this file.
//
// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE.
// End:
#if defined(HAVE_CONFIG_H)
# include <carve_config.h>
#endif
#if defined(CARVE_DEBUG)
#define DEBUG_CONTAINS_VERTEX
#endif
#include <carve/djset.hpp>
#include <carve/geom.hpp>
#include <carve/poly.hpp>
#include <carve/octree_impl.hpp>
#include <carve/timing.hpp>
#include <algorithm>
#include <carve/mesh.hpp>
#ifdef HAVE_BOOST_LIBRARY
# include BOOST_INCLUDE(random.hpp)
#else
# include <carve/random/random.h>
#endif
namespace {
bool emb_test(carve::poly::Polyhedron *poly,
std::map<int, std::set<int> > &embedding,
carve::geom3d::Vector v,
int m_id) {
std::map<int, carve::PointClass> result;
#if defined(CARVE_DEBUG)
std::cerr << "test " << v << " (m_id:" << m_id << ")" << std::endl;
#endif
poly->testVertexAgainstClosedManifolds(v, result, true);
std::set<int> inside;
for (std::map<int, carve::PointClass>::iterator j = result.begin();
j != result.end();
++j) {
if ((*j).first == m_id) continue;
if ((*j).second == carve::POINT_IN) inside.insert((*j).first);
else if ((*j).second == carve::POINT_ON) {
#if defined(CARVE_DEBUG)
std::cerr << " FAIL" << std::endl;
#endif
return false;
}
}
#if defined(CARVE_DEBUG)
std::cerr << " OK (inside.size()==" << inside.size() << ")" << std::endl;
#endif
embedding[m_id] = inside;
return true;
}
struct order_faces {
bool operator()(const carve::poly::Polyhedron::face_t * const &a,
const carve::poly::Polyhedron::face_t * const &b) const {
return std::lexicographical_compare(a->vbegin(), a->vend(), b->vbegin(), b->vend());
}
};
}
namespace carve {
namespace poly {
bool Polyhedron::initSpatialIndex() {
static carve::TimingName FUNC_NAME("Polyhedron::initSpatialIndex()");
carve::TimingBlock block(FUNC_NAME);
octree.setBounds(aabb);
octree.addFaces(faces);
octree.addEdges(edges);
octree.splitTree();
return true;
}
void Polyhedron::invertAll() {
for (size_t i = 0; i < faces.size(); ++i) {
faces[i].invert();
}
for (size_t i = 0; i < edges.size(); ++i) {
std::vector<const face_t *> &f = connectivity.edge_to_face[i];
for (size_t j = 0; j < (f.size() & ~1U); j += 2) {
std::swap(f[j], f[j+1]);
}
}
for (size_t i = 0; i < manifold_is_negative.size(); ++i) {
manifold_is_negative[i] = !manifold_is_negative[i];
}
}
void Polyhedron::invert(const std::vector<bool> &selected_manifolds) {
bool altered = false;
for (size_t i = 0; i < faces.size(); ++i) {
if (faces[i].manifold_id >= 0 &&
(unsigned)faces[i].manifold_id < selected_manifolds.size() &&
selected_manifolds[faces[i].manifold_id]) {
altered = true;
faces[i].invert();
}
}
if (altered) {
for (size_t i = 0; i < edges.size(); ++i) {
std::vector<const face_t *> &f = connectivity.edge_to_face[i];
for (size_t j = 0; j < (f.size() & ~1U); j += 2) {
int m_id = -1;
if (f[j]) m_id = f[j]->manifold_id;
if (f[j+1]) m_id = f[j+1]->manifold_id;
if (m_id >= 0 && (unsigned)m_id < selected_manifolds.size() && selected_manifolds[m_id]) {
std::swap(f[j], f[j+1]);
}
}
}
for (size_t i = 0; i < std::min(selected_manifolds.size(), manifold_is_negative.size()); ++i) {
manifold_is_negative[i] = !manifold_is_negative[i];
}
}
}
void Polyhedron::initVertexConnectivity() {
static carve::TimingName FUNC_NAME("static Polyhedron initVertexConnectivity()");
carve::TimingBlock block(FUNC_NAME);
// allocate space for connectivity info.
connectivity.vertex_to_edge.resize(vertices.size());
connectivity.vertex_to_face.resize(vertices.size());
std::vector<size_t> vertex_face_count;
vertex_face_count.resize(vertices.size());
// work out how many faces/edges each vertex is connected to, in
// order to save on array reallocs.
for (unsigned i = 0; i < faces.size(); ++i) {
face_t &f = faces[i];
for (unsigned j = 0; j < f.nVertices(); j++) {
vertex_face_count[vertexToIndex_fast(f.vertex(j))]++;
}
}
for (size_t i = 0; i < vertices.size(); ++i) {
connectivity.vertex_to_edge[i].reserve(vertex_face_count[i]);
connectivity.vertex_to_face[i].reserve(vertex_face_count[i]);
}
// record connectivity from vertex to edges.
for (size_t i = 0; i < edges.size(); ++i) {
size_t v1i = vertexToIndex_fast(edges[i].v1);
size_t v2i = vertexToIndex_fast(edges[i].v2);
connectivity.vertex_to_edge[v1i].push_back(&edges[i]);
connectivity.vertex_to_edge[v2i].push_back(&edges[i]);
}
// record connectivity from vertex to faces.
for (size_t i = 0; i < faces.size(); ++i) {
face_t &f = faces[i];
for (unsigned j = 0; j < f.nVertices(); j++) {
size_t vi = vertexToIndex_fast(f.vertex(j));
connectivity.vertex_to_face[vi].push_back(&f);
}
}
}
bool Polyhedron::initConnectivity() {
static carve::TimingName FUNC_NAME("Polyhedron::initConnectivity()");
carve::TimingBlock block(FUNC_NAME);
// temporary measure: initialize connectivity by creating a
// half-edge mesh, and then converting back.
std::vector<mesh::Vertex<3> > vertex_storage;
vertex_storage.reserve(vertices.size());
for (size_t i = 0; i < vertices.size(); ++i) {
vertex_storage.push_back(mesh::Vertex<3>(vertices[i].v));
}
std::vector<mesh::Face<3> *> mesh_faces;
std::unordered_map<const mesh::Face<3> *, size_t> face_map;
{
std::vector<mesh::Vertex<3> *> vert_ptrs;
for (size_t i = 0; i < faces.size(); ++i) {
const face_t &src = faces[i];
vert_ptrs.clear();
vert_ptrs.reserve(src.nVertices());
for (size_t j = 0; j < src.nVertices(); ++j) {
size_t vi = vertexToIndex_fast(src.vertex(j));
vert_ptrs.push_back(&vertex_storage[vi]);
}
mesh::Face<3> *face = new mesh::Face<3>(vert_ptrs.begin(), vert_ptrs.end());
mesh_faces.push_back(face);
face_map[face] = i;
}
}
std::vector<mesh::Mesh<3> *> meshes;
mesh::Mesh<3>::create(mesh_faces.begin(), mesh_faces.end(), meshes, mesh::MeshOptions());
mesh::MeshSet<3> *meshset = new mesh::MeshSet<3>(vertex_storage, meshes);
manifold_is_closed.resize(meshset->meshes.size());
manifold_is_negative.resize(meshset->meshes.size());
std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> > edge_map;
if (meshset->vertex_storage.size()) {
mesh::Vertex<3> *Vbase = &meshset->vertex_storage[0];
for (size_t m = 0; m < meshset->meshes.size(); ++m) {
mesh::Mesh<3> *mesh = meshset->meshes[m];
manifold_is_closed[m] = mesh->isClosed();
for (size_t f = 0; f < mesh->faces.size(); ++f) {
mesh::Face<3> *src = mesh->faces[f];
mesh::Edge<3> *e = src->edge;
faces[face_map[src]].manifold_id = m;
do {
edge_map[std::make_pair(e->v1() - Vbase, e->v2() - Vbase)].push_back(e);
e = e->next;
} while (e != src->edge);
}
}
}
size_t n_edges = 0;
for (std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> >::iterator i = edge_map.begin(); i != edge_map.end(); ++i) {
if ((*i).first.first < (*i).first.second || edge_map.find(std::make_pair((*i).first.second, (*i).first.first)) == edge_map.end()) {
n_edges++;
}
}
edges.clear();
edges.reserve(n_edges);
for (std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> >::iterator i = edge_map.begin(); i != edge_map.end(); ++i) {
if ((*i).first.first < (*i).first.second || edge_map.find(std::make_pair((*i).first.second, (*i).first.first)) == edge_map.end()) {
edges.push_back(edge_t(&vertices[(*i).first.first], &vertices[(*i).first.second], this));
}
}
initVertexConnectivity();
for (size_t f = 0; f < faces.size(); ++f) {
face_t &face = faces[f];
size_t N = face.nVertices();
for (size_t v = 0; v < N; ++v) {
size_t v1i = vertexToIndex_fast(face.vertex(v));
size_t v2i = vertexToIndex_fast(face.vertex((v+1)%N));
std::vector<const edge_t *> found_edge;
CARVE_ASSERT(carve::is_sorted(connectivity.vertex_to_edge[v1i].begin(), connectivity.vertex_to_edge[v1i].end()));
CARVE_ASSERT(carve::is_sorted(connectivity.vertex_to_edge[v2i].begin(), connectivity.vertex_to_edge[v2i].end()));
std::set_intersection(connectivity.vertex_to_edge[v1i].begin(), connectivity.vertex_to_edge[v1i].end(),
connectivity.vertex_to_edge[v2i].begin(), connectivity.vertex_to_edge[v2i].end(),
std::back_inserter(found_edge));
CARVE_ASSERT(found_edge.size() == 1);
face.edge(v) = found_edge[0];
}
}
connectivity.edge_to_face.resize(edges.size());
for (size_t i = 0; i < edges.size(); ++i) {
size_t v1i = vertexToIndex_fast(edges[i].v1);
size_t v2i = vertexToIndex_fast(edges[i].v2);
std::list<mesh::Edge<3> *> &efwd = edge_map[std::make_pair(v1i, v2i)];
std::list<mesh::Edge<3> *> &erev = edge_map[std::make_pair(v1i, v2i)];
for (std::list<mesh::Edge<3> *>::iterator j = efwd.begin(); j != efwd.end(); ++j) {
mesh::Edge<3> *edge = *j;
if (face_map.find(edge->face) != face_map.end()) {
connectivity.edge_to_face[i].push_back(&faces[face_map[edge->face]]);
if (edge->rev == NULL) {
connectivity.edge_to_face[i].push_back(NULL);
} else {
connectivity.edge_to_face[i].push_back(&faces[face_map[edge->rev->face]]);
}
}
}
for (std::list<mesh::Edge<3> *>::iterator j = erev.begin(); j != erev.end(); ++j) {
mesh::Edge<3> *edge = *j;
if (face_map.find(edge->face) != face_map.end()) {
if (edge->rev == NULL) {
connectivity.edge_to_face[i].push_back(NULL);
connectivity.edge_to_face[i].push_back(&faces[face_map[edge->face]]);
}
}
}
}
delete meshset;
return true;
}
bool Polyhedron::calcManifoldEmbedding() {
// this could be significantly sped up using bounding box tests
// to work out what pairs of manifolds are embedding candidates.
// A per-manifold AABB could also be used to speed up
// testVertexAgainstClosedManifolds().
static carve::TimingName FUNC_NAME("Polyhedron::calcManifoldEmbedding()");
static carve::TimingName CME_V("Polyhedron::calcManifoldEmbedding() (vertices)");
static carve::TimingName CME_E("Polyhedron::calcManifoldEmbedding() (edges)");
static carve::TimingName CME_F("Polyhedron::calcManifoldEmbedding() (faces)");
carve::TimingBlock block(FUNC_NAME);
const unsigned MCOUNT = manifoldCount();
if (MCOUNT < 2) return true;
std::set<int> vertex_manifolds;
std::map<int, std::set<int> > embedding;
carve::Timing::start(CME_V);
for (size_t i = 0; i < vertices.size(); ++i) {
vertex_manifolds.clear();
if (vertexManifolds(&vertices[i], set_inserter(vertex_manifolds)) != 1) continue;
int m_id = *vertex_manifolds.begin();
if (embedding.find(m_id) == embedding.end()) {
if (emb_test(this, embedding, vertices[i].v, m_id) && embedding.size() == MCOUNT) {
carve::Timing::stop();
goto done;
}
}
}
carve::Timing::stop();
carve::Timing::start(CME_E);
for (size_t i = 0; i < edges.size(); ++i) {
if (connectivity.edge_to_face[i].size() == 2) {
int m_id;
const face_t *f1 = connectivity.edge_to_face[i][0];
const face_t *f2 = connectivity.edge_to_face[i][1];
if (f1) m_id = f1->manifold_id;
if (f2) m_id = f2->manifold_id;
if (embedding.find(m_id) == embedding.end()) {
if (emb_test(this, embedding, (edges[i].v1->v + edges[i].v2->v) / 2, m_id) && embedding.size() == MCOUNT) {
carve::Timing::stop();
goto done;
}
}
}
}
carve::Timing::stop();
carve::Timing::start(CME_F);
for (size_t i = 0; i < faces.size(); ++i) {
int m_id = faces[i].manifold_id;
if (embedding.find(m_id) == embedding.end()) {
carve::geom2d::P2 pv;
if (!carve::geom2d::pickContainedPoint(faces[i].projectedVertices(), pv)) continue;
carve::geom3d::Vector v = carve::poly::face::unproject(faces[i], pv);
if (emb_test(this, embedding, v, m_id) && embedding.size() == MCOUNT) {
carve::Timing::stop();
goto done;
}
}
}
carve::Timing::stop();
CARVE_FAIL("could not find test points");
// std::cerr << "could not find test points!!!" << std::endl;
// return true;
done:;
for (std::map<int, std::set<int> >::iterator i = embedding.begin(); i != embedding.end(); ++i) {
#if defined(CARVE_DEBUG)
std::cerr << (*i).first << " : ";
std::copy((*i).second.begin(), (*i).second.end(), std::ostream_iterator<int>(std::cerr, ","));
std::cerr << std::endl;
#endif
(*i).second.insert(-1);
}
std::set<int> parents, new_parents;
parents.insert(-1);
while (embedding.size()) {
new_parents.clear();
for (std::map<int, std::set<int> >::iterator i = embedding.begin(); i != embedding.end(); ++i) {
if ((*i).second.size() == 1) {
if (parents.find(*(*i).second.begin()) != parents.end()) {
new_parents.insert((*i).first);
#if defined(CARVE_DEBUG)
std::cerr << "parent(" << (*i).first << "): " << *(*i).second.begin() << std::endl;
#endif
} else {
#if defined(CARVE_DEBUG)
std::cerr << "no parent: " << (*i).first << " (looking for: " << *(*i).second.begin() << ")" << std::endl;
#endif
}
}
}
for (std::set<int>::const_iterator i = new_parents.begin(); i != new_parents.end(); ++i) {
embedding.erase(*i);
}
for (std::map<int, std::set<int> >::iterator i = embedding.begin(); i != embedding.end(); ++i) {
size_t n = 0;
for (std::set<int>::const_iterator j = parents.begin(); j != parents.end(); ++j) {
n += (*i).second.erase((*j));
}
CARVE_ASSERT(n != 0);
}
parents.swap(new_parents);
}
return true;
}
bool Polyhedron::init() {
static carve::TimingName FUNC_NAME("Polyhedron::init()");
carve::TimingBlock block(FUNC_NAME);
aabb.fit(vertices.begin(), vertices.end(), vec_adapt_vertex_ref());
connectivity.vertex_to_edge.clear();
connectivity.vertex_to_face.clear();
connectivity.edge_to_face.clear();
if (!initConnectivity()) return false;
if (!initSpatialIndex()) return false;
return true;
}
void Polyhedron::faceRecalc() {
for (size_t i = 0; i < faces.size(); ++i) {
if (!faces[i].recalc()) {
std::ostringstream out;
out << "face " << i << " recalc failed";
throw carve::exception(out.str());
}
}
}
Polyhedron::Polyhedron(const Polyhedron &poly) {
faces.reserve(poly.faces.size());
for (size_t i = 0; i < poly.faces.size(); ++i) {
const face_t &src = poly.faces[i];
faces.push_back(src);
}
commonFaceInit(false); // calls setFaceAndVertexOwner() and init()
}
Polyhedron::Polyhedron(const Polyhedron &poly, const std::vector<bool> &selected_manifolds) {
size_t n_faces = 0;
for (size_t i = 0; i < poly.faces.size(); ++i) {
const face_t &src = poly.faces[i];
if (src.manifold_id >= 0 &&
(unsigned)src.manifold_id < selected_manifolds.size() &&
selected_manifolds[src.manifold_id]) {
n_faces++;
}
}
faces.reserve(n_faces);
for (size_t i = 0; i < poly.faces.size(); ++i) {
const face_t &src = poly.faces[i];
if (src.manifold_id >= 0 &&
(unsigned)src.manifold_id < selected_manifolds.size() &&
selected_manifolds[src.manifold_id]) {
faces.push_back(src);
}
}
commonFaceInit(false); // calls setFaceAndVertexOwner() and init()
}
Polyhedron::Polyhedron(const Polyhedron &poly, int m_id) {
size_t n_faces = 0;
for (size_t i = 0; i < poly.faces.size(); ++i) {
const face_t &src = poly.faces[i];
if (src.manifold_id == m_id) n_faces++;
}
faces.reserve(n_faces);
for (size_t i = 0; i < poly.faces.size(); ++i) {
const face_t &src = poly.faces[i];
if (src.manifold_id == m_id) faces.push_back(src);
}
commonFaceInit(false); // calls setFaceAndVertexOwner() and init()
}
Polyhedron::Polyhedron(const std::vector<carve::geom3d::Vector> &_vertices,
int n_faces,
const std::vector<int> &face_indices) {
// The polyhedron is defined by a vector of vertices, which we
// want to copy, and a face index list, from which we need to
// generate a set of Faces.
vertices.clear();
vertices.resize(_vertices.size());
for (size_t i = 0; i < _vertices.size(); ++i) {
vertices[i].v = _vertices[i];
}
faces.reserve(n_faces);
std::vector<int>::const_iterator iter = face_indices.begin();
std::vector<const vertex_t *> v;
for (int i = 0; i < n_faces; ++i) {
int vertexCount = *iter++;
v.clear();
while (vertexCount--) {
CARVE_ASSERT(*iter >= 0);
CARVE_ASSERT((unsigned)*iter < vertices.size());
v.push_back(&vertices[*iter++]);
}
faces.push_back(face_t(v));
}
setFaceAndVertexOwner();
if (!init()) {
throw carve::exception("polyhedron creation failed");
}
}
Polyhedron::Polyhedron(std::vector<face_t> &_faces,
std::vector<vertex_t> &_vertices,
bool _recalc) {
faces.swap(_faces);
vertices.swap(_vertices);
setFaceAndVertexOwner();
if (_recalc) faceRecalc();
if (!init()) {
throw carve::exception("polyhedron creation failed");
}
}
Polyhedron::Polyhedron(std::vector<face_t> &_faces,
bool _recalc) {
faces.swap(_faces);
commonFaceInit(_recalc); // calls setFaceAndVertexOwner() and init()
}
Polyhedron::Polyhedron(std::list<face_t> &_faces,
bool _recalc) {
faces.reserve(_faces.size());
std::copy(_faces.begin(), _faces.end(), std::back_inserter(faces));
commonFaceInit(_recalc); // calls setFaceAndVertexOwner() and init()
}
void Polyhedron::collectFaceVertices(std::vector<face_t> &faces,
std::vector<vertex_t> &vertices,
std::unordered_map<const vertex_t *, const vertex_t *> &vmap) {
// Given a set of faces, copy all referenced vertices into a
// single vertex array and update the faces to point into that
// array. On exit, vmap contains a mapping from old pointer to
// new pointer.
vertices.clear();
vmap.clear();
for (size_t i = 0, il = faces.size(); i != il; ++i) {
face_t &f = faces[i];
for (size_t j = 0, jl = f.nVertices(); j != jl; ++j) {
vmap[f.vertex(j)] = NULL;
}
}
vertices.reserve(vmap.size());
for (std::unordered_map<const vertex_t *, const vertex_t *>::iterator i = vmap.begin(),
e = vmap.end();
i != e;
++i) {
vertices.push_back(*(*i).first);
(*i).second = &vertices.back();
}
for (size_t i = 0, il = faces.size(); i != il; ++i) {
face_t &f = faces[i];
for (size_t j = 0, jl = f.nVertices(); j != jl; ++j) {
f.vertex(j) = vmap[f.vertex(j)];
}
}
}
void Polyhedron::collectFaceVertices(std::vector<face_t> &faces,
std::vector<vertex_t> &vertices) {
std::unordered_map<const vertex_t *, const vertex_t *> vmap;
collectFaceVertices(faces, vertices, vmap);
}
void Polyhedron::setFaceAndVertexOwner() {
for (size_t i = 0; i < vertices.size(); ++i) vertices[i].owner = this;
for (size_t i = 0; i < faces.size(); ++i) faces[i].owner = this;
}
void Polyhedron::commonFaceInit(bool _recalc) {
collectFaceVertices(faces, vertices);
setFaceAndVertexOwner();
if (_recalc) faceRecalc();
if (!init()) {
throw carve::exception("polyhedron creation failed");
}
}
Polyhedron::~Polyhedron() {
}
void Polyhedron::testVertexAgainstClosedManifolds(const carve::geom3d::Vector &v,
std::map<int, PointClass> &result,
bool ignore_orientation) const {
for (size_t i = 0; i < faces.size(); i++) {
if (!manifold_is_closed[faces[i].manifold_id]) continue; // skip open manifolds
if (faces[i].containsPoint(v)) {
result[faces[i].manifold_id] = POINT_ON;
}
}
double ray_len = aabb.extent.length() * 2;
std::vector<const face_t *> possible_faces;
std::vector<std::pair<const face_t *, carve::geom3d::Vector> > manifold_intersections;
boost::mt19937 rng;
boost::uniform_on_sphere<double> distrib(3);
boost::variate_generator<boost::mt19937 &, boost::uniform_on_sphere<double> > gen(rng, distrib);
for (;;) {
carve::geom3d::Vector ray_dir;
ray_dir = gen();
carve::geom3d::Vector v2 = v + ray_dir * ray_len;
bool failed = false;
carve::geom3d::LineSegment line(v, v2);
carve::geom3d::Vector intersection;
possible_faces.clear();
manifold_intersections.clear();
octree.findFacesNear(line, possible_faces);
for (unsigned i = 0; !failed && i < possible_faces.size(); i++) {
if (!manifold_is_closed[possible_faces[i]->manifold_id]) continue; // skip open manifolds
if (result.find(possible_faces[i]->manifold_id) != result.end()) continue; // already ON
switch (possible_faces[i]->lineSegmentIntersection(line, intersection)) {
case INTERSECT_FACE: {
manifold_intersections.push_back(std::make_pair(possible_faces[i], intersection));
break;
}
case INTERSECT_NONE: {
break;
}
default: {
failed = true;
break;
}
}
}
if (!failed) break;
}
std::vector<int> crossings(manifold_is_closed.size(), 0);
for (size_t i = 0; i < manifold_intersections.size(); ++i) {
const face_t *f = manifold_intersections[i].first;
crossings[f->manifold_id]++;
}
for (size_t i = 0; i < crossings.size(); ++i) {
#if defined(CARVE_DEBUG)
std::cerr << "crossing: " << i << " = " << crossings[i] << " is_negative = " << manifold_is_negative[i] << std::endl;
#endif
if (!manifold_is_closed[i]) continue;
if (result.find(i) != result.end()) continue;
PointClass pc = (crossings[i] & 1) ? POINT_IN : POINT_OUT;
if (!ignore_orientation && manifold_is_negative[i]) pc = (PointClass)-pc;
result[i] = pc;
}
}
PointClass Polyhedron::containsVertex(const carve::geom3d::Vector &v,
const face_t **hit_face,
bool even_odd,
int manifold_id) const {
if (hit_face) *hit_face = NULL;
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{containsVertex " << v << "}" << std::endl;
#endif
if (!aabb.containsPoint(v)) {
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{final:OUT(aabb short circuit)}" << std::endl;
#endif
// XXX: if the top level manifolds are negative, this should be POINT_IN.
// for the moment, this only works for a single manifold.
if (manifold_is_negative.size() == 1 && manifold_is_negative[0]) return POINT_IN;
return POINT_OUT;
}
for (size_t i = 0; i < faces.size(); i++) {
if (manifold_id != -1 && manifold_id != faces[i].manifold_id) continue;
// XXX: Do allow the tested vertex to be ON an open
// manifold. This was here originally because of the
// possibility of an open manifold contained within a closed
// manifold.
// if (!manifold_is_closed[faces[i].manifold_id]) continue;
if (faces[i].containsPoint(v)) {
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{final:ON(hits face " << &faces[i] << ")}" << std::endl;
#endif
if (hit_face) *hit_face = &faces[i];
return POINT_ON;
}
}
double ray_len = aabb.extent.length() * 2;
std::vector<const face_t *> possible_faces;
std::vector<std::pair<const face_t *, carve::geom3d::Vector> > manifold_intersections;
for (;;) {
double a1 = random() / double(RAND_MAX) * M_TWOPI;
double a2 = random() / double(RAND_MAX) * M_TWOPI;
carve::geom3d::Vector ray_dir = carve::geom::VECTOR(sin(a1) * sin(a2), cos(a1) * sin(a2), cos(a2));
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{testing ray: " << ray_dir << "}" << std::endl;
#endif
carve::geom3d::Vector v2 = v + ray_dir * ray_len;
bool failed = false;
carve::geom3d::LineSegment line(v, v2);
carve::geom3d::Vector intersection;
possible_faces.clear();
manifold_intersections.clear();
octree.findFacesNear(line, possible_faces);
for (unsigned i = 0; !failed && i < possible_faces.size(); i++) {
if (manifold_id != -1 && manifold_id != faces[i].manifold_id) continue;
if (!manifold_is_closed[possible_faces[i]->manifold_id]) continue;
switch (possible_faces[i]->lineSegmentIntersection(line, intersection)) {
case INTERSECT_FACE: {
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{intersects face: " << possible_faces[i]
<< " dp: " << dot(ray_dir, possible_faces[i]->plane_eqn.N) << "}" << std::endl;
#endif
if (!even_odd && fabs(dot(ray_dir, possible_faces[i]->plane_eqn.N)) < EPSILON) {
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{failing(small dot product)}" << std::endl;
#endif
failed = true;
break;
}
manifold_intersections.push_back(std::make_pair(possible_faces[i], intersection));
break;
}
case INTERSECT_NONE: {
break;
}
default: {
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{failing(degenerate intersection)}" << std::endl;
#endif
failed = true;
break;
}
}
}
if (!failed) {
if (even_odd) {
return (manifold_intersections.size() & 1) ? POINT_IN : POINT_OUT;
}
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{intersections ok [count:"
<< manifold_intersections.size()
<< "], sorting}"
<< std::endl;
#endif
carve::geom3d::sortInDirectionOfRay(ray_dir,
manifold_intersections.begin(),
manifold_intersections.end(),
carve::geom3d::vec_adapt_pair_second());
std::vector<int> crossings(manifold_is_closed.size(), 0);
for (size_t i = 0; i < manifold_intersections.size(); ++i) {
const face_t *f = manifold_intersections[i].first;
if (dot(ray_dir, f->plane_eqn.N) < 0.0) {
crossings[f->manifold_id]++;
} else {
crossings[f->manifold_id]--;
}
}
#if defined(DEBUG_CONTAINS_VERTEX)
for (size_t i = 0; i < crossings.size(); ++i) {
std::cerr << "{manifold " << i << " crossing count: " << crossings[i] << "}" << std::endl;
}
#endif
for (size_t i = 0; i < manifold_intersections.size(); ++i) {
const face_t *f = manifold_intersections[i].first;
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{intersection at "
<< manifold_intersections[i].second
<< " id: "
<< f->manifold_id
<< " count: "
<< crossings[f->manifold_id]
<< "}"
<< std::endl;
#endif
if (crossings[f->manifold_id] < 0) {
// inside this manifold.
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{final:IN}" << std::endl;
#endif
return POINT_IN;
} else if (crossings[f->manifold_id] > 0) {
// outside this manifold, but it's an infinite manifold. (for instance, an inverted cube)
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{final:OUT}" << std::endl;
#endif
return POINT_OUT;
}
}
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{final:OUT(default)}" << std::endl;
#endif
return POINT_OUT;
}
}
}
void Polyhedron::findEdgesNear(const carve::geom::aabb<3> &aabb,
std::vector<const edge_t *> &outEdges) const {
outEdges.clear();
octree.findEdgesNear(aabb, outEdges);
}
void Polyhedron::findEdgesNear(const carve::geom3d::LineSegment &line,
std::vector<const edge_t *> &outEdges) const {
outEdges.clear();
octree.findEdgesNear(line, outEdges);
}
void Polyhedron::findEdgesNear(const carve::geom3d::Vector &v,
std::vector<const edge_t *> &outEdges) const {
outEdges.clear();
octree.findEdgesNear(v, outEdges);
}
void Polyhedron::findEdgesNear(const face_t &face,
std::vector<const edge_t *> &edges) const {
edges.clear();
octree.findEdgesNear(face, edges);
}
void Polyhedron::findEdgesNear(const edge_t &edge,
std::vector<const edge_t *> &outEdges) const {
outEdges.clear();
octree.findEdgesNear(edge, outEdges);
}
void Polyhedron::findFacesNear(const carve::geom3d::LineSegment &line,
std::vector<const face_t *> &outFaces) const {
outFaces.clear();
octree.findFacesNear(line, outFaces);
}
void Polyhedron::findFacesNear(const carve::geom::aabb<3> &aabb,
std::vector<const face_t *> &outFaces) const {
outFaces.clear();
octree.findFacesNear(aabb, outFaces);
}
void Polyhedron::findFacesNear(const edge_t &edge,
std::vector<const face_t *> &outFaces) const {
outFaces.clear();
octree.findFacesNear(edge, outFaces);
}
void Polyhedron::transform(const carve::math::Matrix &xform) {
for (size_t i = 0; i < vertices.size(); i++) {
vertices[i].v = xform * vertices[i].v;
}
for (size_t i = 0; i < faces.size(); i++) {
faces[i].recalc();
}
init();
}
void Polyhedron::print(std::ostream &o) const {
o << "Polyhedron@" << this << " {" << std::endl;
for (std::vector<vertex_t >::const_iterator
i = vertices.begin(), e = vertices.end(); i != e; ++i) {
o << " V@" << &(*i) << " " << (*i).v << std::endl;
}
for (std::vector<edge_t >::const_iterator
i = edges.begin(), e = edges.end(); i != e; ++i) {
o << " E@" << &(*i) << " {" << std::endl;
o << " V@" << (*i).v1 << " - " << "V@" << (*i).v2 << std::endl;
const std::vector<const face_t *> &faces = connectivity.edge_to_face[edgeToIndex_fast(&(*i))];
for (size_t j = 0; j < (faces.size() & ~1U); j += 2) {
o << " fp: F@" << faces[j] << ", F@" << faces[j+1] << std::endl;
}
o << " }" << std::endl;
}
for (std::vector<face_t >::const_iterator
i = faces.begin(), e = faces.end(); i != e; ++i) {
o << " F@" << &(*i) << " {" << std::endl;
o << " vertices {" << std::endl;
for (face_t::const_vertex_iter_t j = (*i).vbegin(), je = (*i).vend(); j != je; ++j) {
o << " V@" << (*j) << std::endl;
}
o << " }" << std::endl;
o << " edges {" << std::endl;
for (face_t::const_edge_iter_t j = (*i).ebegin(), je = (*i).eend(); j != je; ++j) {
o << " E@" << (*j) << std::endl;
}
carve::geom::plane<3> p = (*i).plane_eqn;
o << " }" << std::endl;
o << " normal " << (*i).plane_eqn.N << std::endl;
o << " aabb " << (*i).aabb << std::endl;
o << " plane_eqn ";
carve::geom::operator<< <3>(o, p);
o << std::endl;
o << " }" << std::endl;
}
o << "}" << std::endl;
}
void Polyhedron::canonicalize() {
orderVertices();
for (size_t i = 0; i < faces.size(); i++) {
face_t &f = faces[i];
size_t j = std::distance(f.vbegin(),
std::min_element(f.vbegin(),
f.vend()));
if (j) {
{
std::vector<const vertex_t *> temp;
temp.reserve(f.nVertices());
std::copy(f.vbegin() + j, f.vend(), std::back_inserter(temp));
std::copy(f.vbegin(), f.vbegin() + j, std::back_inserter(temp));
std::copy(temp.begin(), temp.end(), f.vbegin());
}
{
std::vector<const edge_t *> temp;
temp.reserve(f.nEdges());
std::copy(f.ebegin() + j, f.eend(), std::back_inserter(temp));
std::copy(f.ebegin(), f.ebegin() + j, std::back_inserter(temp));
std::copy(temp.begin(), temp.end(), f.ebegin());
}
}
}
std::vector<face_t *> face_ptrs;
face_ptrs.reserve(faces.size());
for (size_t i = 0; i < faces.size(); ++i) face_ptrs.push_back(&faces[i]);
std::sort(face_ptrs.begin(), face_ptrs.end(), order_faces());
std::vector<face_t> sorted_faces;
sorted_faces.reserve(faces.size());
for (size_t i = 0; i < faces.size(); ++i) sorted_faces.push_back(*face_ptrs[i]);
std::swap(faces, sorted_faces);
}
}
}