blender/intern/cycles/kernel/svm/svm_musgrave.h
Brecht Van Lommel c18712e868 Cycles: change __device and similar qualifiers to ccl_device in kernel code.
This to avoids build conflicts with libc++ on FreeBSD, these __ prefixed values
are reserved for compilers. I apologize to anyone who has patches or branches
and has to go through the pain of merging this change, it may be easiest to do
these same replacements in your code and then apply/merge the patch.

Ref T37477.
2013-11-18 08:48:15 +01:00

239 lines
6.9 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
CCL_NAMESPACE_BEGIN
/* Musgrave fBm
*
* H: fractal increment parameter
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*
* from "Texturing and Modelling: A procedural approach"
*/
ccl_device_noinline float noise_musgrave_fBm(float3 p, NodeNoiseBasis basis, float H, float lacunarity, float octaves)
{
float rmd;
float value = 0.0f;
float pwr = 1.0f;
float pwHL = powf(lacunarity, -H);
int i;
for(i = 0; i < float_to_int(octaves); i++) {
value += snoise(p) * pwr;
pwr *= pwHL;
p *= lacunarity;
}
rmd = octaves - floorf(octaves);
if(rmd != 0.0f)
value += rmd * snoise(p) * pwr;
return value;
}
/* Musgrave Multifractal
*
* H: highest fractal dimension
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*/
ccl_device_noinline float noise_musgrave_multi_fractal(float3 p, NodeNoiseBasis basis, float H, float lacunarity, float octaves)
{
float rmd;
float value = 1.0f;
float pwr = 1.0f;
float pwHL = powf(lacunarity, -H);
int i;
for(i = 0; i < float_to_int(octaves); i++) {
value *= (pwr * snoise(p) + 1.0f);
pwr *= pwHL;
p *= lacunarity;
}
rmd = octaves - floorf(octaves);
if(rmd != 0.0f)
value *= (rmd * pwr * snoise(p) + 1.0f); /* correct? */
return value;
}
/* Musgrave Heterogeneous Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline float noise_musgrave_hetero_terrain(float3 p, NodeNoiseBasis basis, float H, float lacunarity, float octaves, float offset)
{
float value, increment, rmd;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
int i;
/* first unscaled octave of function; later octaves are scaled */
value = offset + snoise(p);
p *= lacunarity;
for(i = 1; i < float_to_int(octaves); i++) {
increment = (snoise(p) + offset) * pwr * value;
value += increment;
pwr *= pwHL;
p *= lacunarity;
}
rmd = octaves - floorf(octaves);
if(rmd != 0.0f) {
increment = (snoise(p) + offset) * pwr * value;
value += rmd * increment;
}
return value;
}
/* Hybrid Additive/Multiplicative Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline float noise_musgrave_hybrid_multi_fractal(float3 p, NodeNoiseBasis basis, float H, float lacunarity, float octaves, float offset, float gain)
{
float result, signal, weight, rmd;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
int i;
result = snoise(p) + offset;
weight = gain * result;
p *= lacunarity;
for(i = 1; (weight > 0.001f) && (i < float_to_int(octaves)); i++) {
if(weight > 1.0f)
weight = 1.0f;
signal = (snoise(p) + offset) * pwr;
pwr *= pwHL;
result += weight * signal;
weight *= gain * signal;
p *= lacunarity;
}
rmd = octaves - floorf(octaves);
if(rmd != 0.0f)
result += rmd * ((snoise(p) + offset) * pwr);
return result;
}
/* Ridged Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline float noise_musgrave_ridged_multi_fractal(float3 p, NodeNoiseBasis basis, float H, float lacunarity, float octaves, float offset, float gain)
{
float result, signal, weight;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
int i;
signal = offset - fabsf(snoise(p));
signal *= signal;
result = signal;
weight = 1.0f;
for(i = 1; i < float_to_int(octaves); i++) {
p *= lacunarity;
weight = clamp(signal * gain, 0.0f, 1.0f);
signal = offset - fabsf(snoise(p));
signal *= signal;
signal *= weight;
result += signal * pwr;
pwr *= pwHL;
}
return result;
}
/* Shader */
ccl_device float svm_musgrave(NodeMusgraveType type, float dimension, float lacunarity, float octaves, float offset, float intensity, float gain, float scale, float3 p)
{
NodeNoiseBasis basis = NODE_NOISE_PERLIN;
p *= scale;
if(type == NODE_MUSGRAVE_MULTIFRACTAL)
return intensity*noise_musgrave_multi_fractal(p, basis, dimension, lacunarity, octaves);
else if(type == NODE_MUSGRAVE_FBM)
return intensity*noise_musgrave_fBm(p, basis, dimension, lacunarity, octaves);
else if(type == NODE_MUSGRAVE_HYBRID_MULTIFRACTAL)
return intensity*noise_musgrave_hybrid_multi_fractal(p, basis, dimension, lacunarity, octaves, offset, gain);
else if(type == NODE_MUSGRAVE_RIDGED_MULTIFRACTAL)
return intensity*noise_musgrave_ridged_multi_fractal(p, basis, dimension, lacunarity, octaves, offset, gain);
else if(type == NODE_MUSGRAVE_HETERO_TERRAIN)
return intensity*noise_musgrave_hetero_terrain(p, basis, dimension, lacunarity, octaves, offset);
return 0.0f;
}
ccl_device void svm_node_tex_musgrave(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int *offset)
{
uint4 node2 = read_node(kg, offset);
uint4 node3 = read_node(kg, offset);
uint type, co_offset, color_offset, fac_offset;
uint dimension_offset, lacunarity_offset, detail_offset, offset_offset;
uint gain_offset, scale_offset;
decode_node_uchar4(node.y, &type, &co_offset, &color_offset, &fac_offset);
decode_node_uchar4(node.z, &dimension_offset, &lacunarity_offset, &detail_offset, &offset_offset);
decode_node_uchar4(node.w, &gain_offset, &scale_offset, NULL, NULL);
float3 co = stack_load_float3(stack, co_offset);
float dimension = stack_load_float_default(stack, dimension_offset, node2.x);
float lacunarity = stack_load_float_default(stack, lacunarity_offset, node2.y);
float detail = stack_load_float_default(stack, detail_offset, node2.z);
float foffset = stack_load_float_default(stack, offset_offset, node2.w);
float gain = stack_load_float_default(stack, gain_offset, node3.x);
float scale = stack_load_float_default(stack, scale_offset, node3.y);
dimension = fmaxf(dimension, 1e-5f);
detail = clamp(detail, 0.0f, 16.0f);
lacunarity = fmaxf(lacunarity, 1e-5f);
float f = svm_musgrave((NodeMusgraveType)type,
dimension, lacunarity, detail, foffset, 1.0f, gain, scale, co);
if(stack_valid(fac_offset))
stack_store_float(stack, fac_offset, f);
if(stack_valid(color_offset))
stack_store_float3(stack, color_offset, make_float3(f, f, f));
}
CCL_NAMESPACE_END