blender/source/gameengine/Rasterizer/RAS_MeshObject.cpp
Benoit Bolsee 2bece8dcb5 BGE Patch: Add Shape Action support and update MSCV_7 project file for glew.
Shape Action are now supported in the BGE. A new type of actuator "Shape Action" is available on mesh objects. It can be combined with Action actuator on parent armature. Only relative keys are supported. All the usual action options are available: type, blending, priority, Python API. Only actions with shape channels should be specified of course, otherwise the actuator has no effect. Shape action will still work after a mesh replacement provided that the new mesh has compatible shape keys.
2008-06-18 06:46:49 +00:00

703 lines
16 KiB
C++

/**
* $Id$
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "RAS_MeshObject.h"
#include "RAS_IRasterizer.h"
#include "MT_MinMax.h"
#include "MT_Point3.h"
STR_String RAS_MeshObject::s_emptyname = "";
KX_ArrayOptimizer::~KX_ArrayOptimizer()
{
for (vector<KX_VertexArray*>::iterator itv = m_VertexArrayCache1.begin();
!(itv == m_VertexArrayCache1.end());++itv)
{
delete (*itv);
}
for (vector<KX_IndexArray*>::iterator iti = m_IndexArrayCache1.begin();
!(iti == m_IndexArrayCache1.end());++iti)
{
delete (*iti);
}
m_TriangleArrayCount.clear();
m_VertexArrayCache1.clear();
m_IndexArrayCache1.clear();
}
RAS_MeshObject::RAS_MeshObject(Mesh* mesh, int lightlayer)
: m_bModified(true),
m_lightlayer(lightlayer),
m_zsort(false),
m_MeshMod(true),
m_class(0),
m_mesh(mesh)
{
}
bool RAS_MeshObject::MeshModified()
{
return m_MeshMod;
}
RAS_MeshObject::~RAS_MeshObject()
{
for (vector<RAS_Polygon*>::iterator it=m_Polygons.begin();!(it==m_Polygons.end());it++)
{
delete (*it);
}
ClearArrayData();
}
unsigned int RAS_MeshObject::GetLightLayer()
{
return m_lightlayer;
}
int RAS_MeshObject::NumMaterials()
{
return m_materials.size();
}
const STR_String& RAS_MeshObject::GetMaterialName(unsigned int matid)
{
RAS_MaterialBucket* bucket = GetMaterialBucket(matid);
return bucket?bucket->GetPolyMaterial()->GetMaterialName():s_emptyname;
}
RAS_MaterialBucket* RAS_MeshObject::GetMaterialBucket(unsigned int matid)
{
if (m_materials.size() > 0 && (matid < m_materials.size()))
{
RAS_MaterialBucket::Set::const_iterator it = m_materials.begin();
while (matid--) ++it;
return *it;
}
return NULL;
}
int RAS_MeshObject::NumPolygons()
{
return m_Polygons.size();
}
RAS_Polygon* RAS_MeshObject::GetPolygon(int num)
{
return m_Polygons[num];
}
RAS_MaterialBucket::Set::iterator RAS_MeshObject::GetFirstMaterial()
{
return m_materials.begin();
}
RAS_MaterialBucket::Set::iterator RAS_MeshObject::GetLastMaterial()
{
return m_materials.end();
}
void RAS_MeshObject::SetName(STR_String name)
{
m_name = name;
}
const STR_String& RAS_MeshObject::GetName()
{
return m_name;
}
const STR_String& RAS_MeshObject::GetTextureName(unsigned int matid)
{
RAS_MaterialBucket* bucket = GetMaterialBucket(matid);
return bucket?bucket->GetPolyMaterial()->GetTextureName():s_emptyname;
}
void RAS_MeshObject::AddPolygon(RAS_Polygon* poly)
{
m_Polygons.push_back(poly);
}
void RAS_MeshObject::DebugColor(unsigned int abgr)
{
/*
int numpolys = NumPolygons();
for (int i=0;i<numpolys;i++)
{
RAS_Polygon* poly = m_polygons[i];
for (int v=0;v<poly->VertexCount();v++)
{
RAS_TexVert* vtx = poly->GetVertex(v);
vtx->setDebugRGBA(abgr);
}
}
*/
m_debugcolor = abgr;
}
void RAS_MeshObject::SchedulePoly(const KX_VertexIndex& idx,
int numverts,
RAS_IPolyMaterial* mat)
{
//int indexpos = m_IndexArrayCount[idx.m_vtxarray];
//m_IndexArrayCount[idx.m_vtxarray] = indexpos + 3;
KX_ArrayOptimizer* ao = GetArrayOptimizer(mat);
ao->m_IndexArrayCache1[idx.m_vtxarray]->push_back(idx.m_indexarray[0]);
ao->m_IndexArrayCache1[idx.m_vtxarray]->push_back(idx.m_indexarray[1]);
ao->m_IndexArrayCache1[idx.m_vtxarray]->push_back(idx.m_indexarray[2]);
if (!mat->UsesTriangles()) //if (!m_bUseTriangles)
{
//m_IndexArrayCount[idx.m_vtxarray] = indexpos+4;
ao->m_IndexArrayCache1[idx.m_vtxarray]->push_back(idx.m_indexarray[3]);
}
}
void RAS_MeshObject::ScheduleWireframePoly(const KX_VertexIndex& idx,
int numverts,
int edgecode,
RAS_IPolyMaterial* mat)
{
//int indexpos = m_IndexArrayCount[idx.m_vtxarray];
int edgetrace = 1<<(numverts-1);
bool drawedge = (edgecode & edgetrace)!=0;
edgetrace = 1;
int prevvert = idx.m_indexarray[numverts-1];
KX_ArrayOptimizer* ao = GetArrayOptimizer(mat);
for (int v = 0; v < numverts; v++)
{
unsigned int curvert = idx.m_indexarray[v];
if (drawedge)
{
ao->m_IndexArrayCache1[idx.m_vtxarray]->push_back(prevvert);
ao->m_IndexArrayCache1[idx.m_vtxarray]->push_back(curvert);
}
prevvert = curvert;
drawedge = (edgecode & edgetrace)!=0;
edgetrace*=2;
}
//m_IndexArrayCount[idx.m_vtxarray] = indexpos;
}
int RAS_MeshObject::FindOrAddVertex(int vtxarray,
const MT_Point3& xyz,
const MT_Point2& uv,
const MT_Point2& uv2,
const MT_Vector4& tangent,
const unsigned int rgbacolor,
const MT_Vector3& normal,
bool flat,
RAS_IPolyMaterial* mat,
int orgindex)
{
KX_ArrayOptimizer* ao = GetArrayOptimizer(mat);//*(m_matVertexArrays[*mat]);
int numverts = ao->m_VertexArrayCache1[vtxarray]->size();//m_VertexArrayCount[vtxarray];
RAS_TexVert newvert(xyz,uv,uv2,tangent,rgbacolor,normal, flat? TV_CALCFACENORMAL: 0);
#define KX_FIND_SHARED_VERTICES
#ifdef KX_FIND_SHARED_VERTICES
if(!flat) {
for (std::vector<RAS_MatArrayIndex>::iterator it = m_xyz_index_to_vertex_index_mapping[orgindex].begin();
it != m_xyz_index_to_vertex_index_mapping[orgindex].end();
it++)
{
if ((*it).m_arrayindex1 == ao->m_index1 &&
(*it).m_array == vtxarray &&
*(*it).m_matid == *mat &&
(*ao->m_VertexArrayCache1[vtxarray])[(*it).m_index].closeTo(&newvert)
)
{
return (*it).m_index;
}
}
}
#endif // KX_FIND_SHARED_VERTICES
// no vertex found, add one
ao->m_VertexArrayCache1[vtxarray]->push_back(newvert);
// printf("(%f,%f,%f) ",xyz[0],xyz[1],xyz[2]);
RAS_MatArrayIndex idx;
idx.m_arrayindex1 = ao->m_index1;
idx.m_array = vtxarray;
idx.m_index = numverts;
idx.m_matid = mat;
m_xyz_index_to_vertex_index_mapping[orgindex].push_back(idx);
return numverts;
}
const vecVertexArray& RAS_MeshObject::GetVertexCache (RAS_IPolyMaterial* mat)
{
KX_ArrayOptimizer* ao = GetArrayOptimizer(mat);//*(m_matVertexArrays[*mat]);
return ao->m_VertexArrayCache1;
}
int RAS_MeshObject::GetVertexArrayLength(RAS_IPolyMaterial* mat)
{
int len = 0;
const vecVertexArray & vertexvec = GetVertexCache(mat);
vector<KX_VertexArray*>::const_iterator it = vertexvec.begin();
for (; it != vertexvec.end(); ++it)
{
len += (*it)->size();
}
return len;
}
RAS_TexVert* RAS_MeshObject::GetVertex(unsigned int matid,
unsigned int index)
{
RAS_TexVert* vertex = NULL;
RAS_MaterialBucket* bucket = GetMaterialBucket(matid);
if (bucket)
{
RAS_IPolyMaterial* mat = bucket->GetPolyMaterial();
if (mat)
{
const vecVertexArray & vertexvec = GetVertexCache(mat);
vector<KX_VertexArray*>::const_iterator it = vertexvec.begin();
for (unsigned int len = 0; it != vertexvec.end(); ++it)
{
if (index < len + (*it)->size())
{
vertex = &(*(*it))[index-len];
break;
}
else
{
len += (*it)->size();
}
}
}
}
return vertex;
}
const vecIndexArrays& RAS_MeshObject::GetIndexCache (RAS_IPolyMaterial* mat)
{
KX_ArrayOptimizer* ao = GetArrayOptimizer(mat);//*(m_matVertexArrays[*mat]);
return ao->m_IndexArrayCache1;
}
KX_ArrayOptimizer* RAS_MeshObject::GetArrayOptimizer(RAS_IPolyMaterial* polymat)
{
KX_ArrayOptimizer** aop = (m_matVertexArrayS[*polymat]);
if (aop)
return *aop;
int numelements = m_matVertexArrayS.size();
m_sortedMaterials.push_back(polymat);
KX_ArrayOptimizer* ao = new KX_ArrayOptimizer(numelements);
m_matVertexArrayS.insert(*polymat,ao);
return ao;
}
void RAS_MeshObject::Bucketize(double* oglmatrix,
void* clientobj,
bool useObjectColor,
const MT_Vector4& rgbavec)
{
KX_MeshSlot ms;
ms.m_clientObj = clientobj;
ms.m_mesh = this;
ms.m_OpenGLMatrix = oglmatrix;
ms.m_bObjectColor = useObjectColor;
ms.m_RGBAcolor = rgbavec;
for (RAS_MaterialBucket::Set::iterator it = m_materials.begin();it!=m_materials.end();++it)
{
RAS_MaterialBucket* bucket = *it;
bucket->SchedulePolygons(0);
// KX_ArrayOptimizer* oa = GetArrayOptimizer(bucket->GetPolyMaterial());
bucket->SetMeshSlot(ms);
}
}
void RAS_MeshObject::MarkVisible(double* oglmatrix,
void* clientobj,
bool visible,
bool useObjectColor,
const MT_Vector4& rgbavec)
{
KX_MeshSlot ms;
ms.m_clientObj = clientobj;
ms.m_mesh = this;
ms.m_OpenGLMatrix = oglmatrix;
ms.m_RGBAcolor = rgbavec;
ms.m_bObjectColor= useObjectColor;
for (RAS_MaterialBucket::Set::iterator it = m_materials.begin();it!=m_materials.end();++it)
{
RAS_MaterialBucket* bucket = *it;
bucket->SchedulePolygons(0);
// KX_ArrayOptimizer* oa = GetArrayOptimizer(bucket->GetPolyMaterial());
bucket->MarkVisibleMeshSlot(ms,visible,useObjectColor,rgbavec);
}
}
void RAS_MeshObject::RemoveFromBuckets(double* oglmatrix,
void* clientobj)
{
KX_MeshSlot ms;
ms.m_clientObj = clientobj;
ms.m_mesh = this;
ms.m_OpenGLMatrix = oglmatrix;
for (RAS_MaterialBucket::Set::iterator it = m_materials.begin();it!=m_materials.end();++it)
{
RAS_MaterialBucket* bucket = *it;
// RAS_IPolyMaterial* polymat = bucket->GetPolyMaterial();
bucket->SchedulePolygons(0);
//KX_ArrayOptimizer* oa = GetArrayOptimizer(polymat);
bucket->RemoveMeshSlot(ms);
}
}
/*
* RAS_MeshObject::GetVertex returns the vertex located somewhere in the vertexpool
* it is the clients responsibility to make sure the array and index are valid
*/
RAS_TexVert* RAS_MeshObject::GetVertex(short array,
unsigned int index,
RAS_IPolyMaterial* polymat)
{
KX_ArrayOptimizer* ao = GetArrayOptimizer(polymat);//*(m_matVertexArrays[*polymat]);
return &((*(ao->m_VertexArrayCache1)[array])[index]);
}
void RAS_MeshObject::ClearArrayData()
{
for (int i=0;i<m_matVertexArrayS.size();i++)
{
KX_ArrayOptimizer** ao = m_matVertexArrayS.at(i);
if (ao)
{
delete *ao;
}
}
}
/**
* RAS_MeshObject::CreateNewVertices creates vertices within sorted pools of vertices that share same material
*/
int RAS_MeshObject::FindVertexArray(int numverts,
RAS_IPolyMaterial* polymat)
{
// bool found=false;
int array=-1;
KX_ArrayOptimizer* ao = GetArrayOptimizer(polymat);
for (unsigned int i=0;i<ao->m_VertexArrayCache1.size();i++)
{
if ( (ao->m_TriangleArrayCount[i] + (numverts-2)) < BUCKET_MAX_TRIANGLES)
{
if((ao->m_VertexArrayCache1[i]->size()+numverts < BUCKET_MAX_INDICES))
{
array = i;
ao->m_TriangleArrayCount[array]+=numverts-2;
break;
}
}
}
if (array == -1)
{
array = ao->m_VertexArrayCache1.size();
vector<RAS_TexVert>* va = new vector<RAS_TexVert>;
ao->m_VertexArrayCache1.push_back(va);
KX_IndexArray *ia = new KX_IndexArray();
ao->m_IndexArrayCache1.push_back(ia);
ao->m_TriangleArrayCount.push_back(numverts-2);
}
return array;
}
//void RAS_MeshObject::Transform(const MT_Transform& trans)
//{
//m_trans.translate(MT_Vector3(0,0,1));//.operator *=(trans);
// for (int i=0;i<m_Polygons.size();i++)
// {
// m_Polygons[i]->Transform(trans);
// }
//}
/*
void RAS_MeshObject::RelativeTransform(const MT_Vector3& vec)
{
for (int i=0;i<m_Polygons.size();i++)
{
m_Polygons[i]->RelativeTransform(vec);
}
}
*/
void RAS_MeshObject::UpdateMaterialList()
{
m_materials.clear();
unsigned int numpolys = m_Polygons.size();
// for all polygons, find out which material they use, and add it to the set of materials
for (unsigned int i=0;i<numpolys;i++)
{
m_materials.insert(m_Polygons[i]->GetMaterial());
}
}
struct RAS_MeshObject::polygonSlot
{
float m_z;
RAS_Polygon *m_poly;
polygonSlot(float z, RAS_Polygon* poly) :
m_z(z),
m_poly(poly)
{}
/**
* pnorm and pval form the plane equation that the distance from is used to
* sort against.
*/
polygonSlot(const MT_Vector3 &pnorm, const MT_Scalar &pval, RAS_MeshObject *mesh, RAS_Polygon* poly) :
m_poly(poly)
{
const KX_VertexIndex &base = m_poly->GetIndexBase();
RAS_TexVert *vert = mesh->GetVertex(base.m_vtxarray, base.m_indexarray[0], poly->GetMaterial()->GetPolyMaterial());
m_z = MT_dot(pnorm, vert->getLocalXYZ()) + pval;
for(int i = 1; i < m_poly->VertexCount(); i++)
{
vert = mesh->GetVertex(base.m_vtxarray, base.m_indexarray[i], poly->GetMaterial()->GetPolyMaterial());
float z = MT_dot(pnorm, vert->getLocalXYZ()) + pval;
m_z += z;
}
m_z /= m_poly->VertexCount();
}
};
struct RAS_MeshObject::backtofront
{
bool operator()(const polygonSlot &a, const polygonSlot &b) const
{
return a.m_z < b.m_z;
}
};
struct RAS_MeshObject::fronttoback
{
bool operator()(const polygonSlot &a, const polygonSlot &b) const
{
return a.m_z > b.m_z;
}
};
void RAS_MeshObject::SortPolygons(const MT_Transform &transform)
{
if (!m_zsort)
return;
// Extract camera Z plane...
const MT_Vector3 pnorm(transform.getBasis()[2]);
const MT_Scalar pval = transform.getOrigin()[2];
unsigned int numpolys = m_Polygons.size();
std::multiset<polygonSlot, backtofront> alphapolyset;
std::multiset<polygonSlot, fronttoback> solidpolyset;
for (unsigned int p = 0; p < numpolys; p++)
{
RAS_Polygon* poly = m_Polygons[p];
if (poly->IsVisible())
{
if (poly->GetMaterial()->GetPolyMaterial()->IsTransparant())
{
alphapolyset.insert(polygonSlot(pnorm, pval, this, poly));
} else {
solidpolyset.insert(polygonSlot(pnorm, pval, this, poly));
}
}
}
// Clear current array data.
for (RAS_MaterialBucket::Set::iterator it = m_materials.begin();it!=m_materials.end();++it)
{
vector<KX_IndexArray*> *indexcache = &GetArrayOptimizer((*it)->GetPolyMaterial())->m_IndexArrayCache1;
for (vector<KX_IndexArray*>::iterator iit = indexcache->begin(); iit != indexcache->end(); ++iit)
(*iit)->clear();
}
std::multiset<polygonSlot, fronttoback>::iterator sit = solidpolyset.begin();
for (; sit != solidpolyset.end(); ++sit)
SchedulePoly((*sit).m_poly->GetVertexIndexBase(), (*sit).m_poly->VertexCount(), (*sit).m_poly->GetMaterial()->GetPolyMaterial());
std::multiset<polygonSlot, backtofront>::iterator ait = alphapolyset.begin();
for (; ait != alphapolyset.end(); ++ait)
SchedulePoly((*ait).m_poly->GetVertexIndexBase(), (*ait).m_poly->VertexCount(), (*ait).m_poly->GetMaterial()->GetPolyMaterial());
}
void RAS_MeshObject::SchedulePolygons(const MT_Transform &transform, int drawingmode)
{
// int nummaterials = m_materials.size();
int i;
if (m_bModified)
{
for (RAS_MaterialBucket::Set::iterator it = m_materials.begin();it!=m_materials.end();++it)
{
RAS_MaterialBucket* bucket = *it;
bucket->SchedulePolygons(drawingmode);
if (bucket->GetPolyMaterial()->IsZSort())
m_zsort = true;
}
int numpolys = m_Polygons.size();
if ((drawingmode > RAS_IRasterizer::KX_BOUNDINGBOX) &&
(drawingmode < RAS_IRasterizer::KX_SOLID))
{
for (i=0;i<numpolys;i++)
{
RAS_Polygon* poly = m_Polygons[i];
if (poly->IsVisible())
ScheduleWireframePoly(poly->GetVertexIndexBase(),poly->VertexCount(),poly->GetEdgeCode()
,poly->GetMaterial()->GetPolyMaterial());
}
m_zsort = false;
}
else
{
if (!m_zsort)
{
for (i=0;i<numpolys;i++)
{
RAS_Polygon* poly = m_Polygons[i];
if (poly->IsVisible())
{
SchedulePoly(poly->GetVertexIndexBase(),poly->VertexCount(),poly->GetMaterial()->GetPolyMaterial());
}
}
}
}
m_bModified = false;
m_MeshMod = true;
}
}