blender/extern/libmv/libmv-capi.cpp
Sergey Sharybin 4f5f97254c Reconstructed scene scale ambiguity improvement
Made it so reconstructed scene always scaled in a way
that variance of camera centers is unity.

This solves "issues" when different keyframes will
give the same reprojection error but will give scenes
with different.scale, which could easily have been
considered as a bad keyframe combination.

This change is essential for automatic keyframe
selection algorithm to work reliable for user.
2013-05-09 16:38:43 +00:00

982 lines
31 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2011 Blender Foundation.
* All rights reserved.
*
* Contributor(s): Blender Foundation,
* Sergey Sharybin
*
* ***** END GPL LICENSE BLOCK *****
*/
/* define this to generate PNG images with content of search areas
tracking between which failed */
#undef DUMP_FAILURE
/* define this to generate PNG images with content of search areas
on every itteration of tracking */
#undef DUMP_ALWAYS
#include "libmv-capi.h"
#include "libmv/logging/logging.h"
#include "libmv/tracking/track_region.h"
#include "libmv/simple_pipeline/callbacks.h"
#include "libmv/simple_pipeline/tracks.h"
#include "libmv/simple_pipeline/initialize_reconstruction.h"
#include "libmv/simple_pipeline/bundle.h"
#include "libmv/simple_pipeline/detect.h"
#include "libmv/simple_pipeline/pipeline.h"
#include "libmv/simple_pipeline/camera_intrinsics.h"
#include "libmv/simple_pipeline/modal_solver.h"
#include "libmv/simple_pipeline/reconstruction_scale.h"
#include <stdlib.h>
#include <assert.h>
#if defined(DUMP_FAILURE) || defined (DUMP_ALWAYS)
# include <png.h>
#endif
#ifdef _MSC_VER
# define snprintf _snprintf
#endif
typedef struct libmv_Reconstruction {
libmv::EuclideanReconstruction reconstruction;
/* used for per-track average error calculation after reconstruction */
libmv::Tracks tracks;
libmv::CameraIntrinsics intrinsics;
double error;
} libmv_Reconstruction;
typedef struct libmv_Features {
int count, margin;
libmv::Feature *features;
} libmv_Features;
/* ************ Logging ************ */
void libmv_initLogging(const char *argv0)
{
/* Make it so FATAL messages are always print into console */
char severity_fatal[32];
snprintf(severity_fatal, sizeof(severity_fatal), "%d",
google::GLOG_FATAL);
google::InitGoogleLogging(argv0);
google::SetCommandLineOption("logtostderr", "1");
google::SetCommandLineOption("v", "0");
google::SetCommandLineOption("stderrthreshold", severity_fatal);
google::SetCommandLineOption("minloglevel", severity_fatal);
}
void libmv_startDebugLogging(void)
{
google::SetCommandLineOption("logtostderr", "1");
google::SetCommandLineOption("v", "2");
google::SetCommandLineOption("stderrthreshold", "1");
google::SetCommandLineOption("minloglevel", "0");
}
void libmv_setLoggingVerbosity(int verbosity)
{
char val[10];
snprintf(val, sizeof(val), "%d", verbosity);
google::SetCommandLineOption("v", val);
}
/* ************ Utility ************ */
static void floatBufToImage(const float *buf, int width, int height, int channels, libmv::FloatImage *image)
{
int x, y, k, a = 0;
image->Resize(height, width, channels);
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
for (k = 0; k < channels; k++) {
(*image)(y, x, k) = buf[a++];
}
}
}
}
static void imageToFloatBuf(const libmv::FloatImage *image, int channels, float *buf)
{
int x, y, k, a = 0;
for (y = 0; y < image->Height(); y++) {
for (x = 0; x < image->Width(); x++) {
for (k = 0; k < channels; k++) {
buf[a++] = (*image)(y, x, k);
}
}
}
}
#if defined(DUMP_FAILURE) || defined (DUMP_ALWAYS)
static void savePNGImage(png_bytep *row_pointers, int width, int height, int depth, int color_type, char *file_name)
{
png_infop info_ptr;
png_structp png_ptr;
FILE *fp = fopen(file_name, "wb");
if (!fp)
return;
/* Initialize stuff */
png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
info_ptr = png_create_info_struct(png_ptr);
if (setjmp(png_jmpbuf(png_ptr))) {
fclose(fp);
return;
}
png_init_io(png_ptr, fp);
/* write header */
if (setjmp(png_jmpbuf(png_ptr))) {
fclose(fp);
return;
}
png_set_IHDR(png_ptr, info_ptr, width, height,
depth, color_type, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE);
png_write_info(png_ptr, info_ptr);
/* write bytes */
if (setjmp(png_jmpbuf(png_ptr))) {
fclose(fp);
return;
}
png_write_image(png_ptr, row_pointers);
/* end write */
if (setjmp(png_jmpbuf(png_ptr))) {
fclose(fp);
return;
}
png_write_end(png_ptr, NULL);
fclose(fp);
}
static void saveImage(const char *prefix, libmv::FloatImage image, int x0, int y0)
{
int x, y;
png_bytep *row_pointers;
row_pointers= (png_bytep*)malloc(sizeof(png_bytep)*image.Height());
for (y = 0; y < image.Height(); y++) {
row_pointers[y]= (png_bytep)malloc(sizeof(png_byte)*4*image.Width());
for (x = 0; x < image.Width(); x++) {
if (x0 == x && image.Height() - y0 - 1 == y) {
row_pointers[y][x*4+0]= 255;
row_pointers[y][x*4+1]= 0;
row_pointers[y][x*4+2]= 0;
row_pointers[y][x*4+3]= 255;
}
else {
float pixel = image(image.Height() - y - 1, x, 0);
row_pointers[y][x*4+0]= pixel*255;
row_pointers[y][x*4+1]= pixel*255;
row_pointers[y][x*4+2]= pixel*255;
row_pointers[y][x*4+3]= 255;
}
}
}
{
static int a= 0;
char buf[128];
snprintf(buf, sizeof(buf), "%s_%02d.png", prefix, ++a);
savePNGImage(row_pointers, image.Width(), image.Height(), 8, PNG_COLOR_TYPE_RGBA, buf);
}
for (y = 0; y < image.Height(); y++) {
free(row_pointers[y]);
}
free(row_pointers);
}
static void saveBytesImage(const char *prefix, unsigned char *data, int width, int height)
{
int x, y;
png_bytep *row_pointers;
row_pointers= (png_bytep*)malloc(sizeof(png_bytep)*height);
for (y = 0; y < height; y++) {
row_pointers[y]= (png_bytep)malloc(sizeof(png_byte)*4*width);
for (x = 0; x < width; x++) {
char pixel = data[width*y+x];
row_pointers[y][x*4+0]= pixel;
row_pointers[y][x*4+1]= pixel;
row_pointers[y][x*4+2]= pixel;
row_pointers[y][x*4+3]= 255;
}
}
{
static int a = 0;
char buf[128];
snprintf(buf, sizeof(buf), "%s_%02d.png", prefix, ++a);
savePNGImage(row_pointers, width, height, 8, PNG_COLOR_TYPE_RGBA, buf);
}
for (y = 0; y < height; y++) {
free(row_pointers[y]);
}
free(row_pointers);
}
#endif
/* ************ Planar tracker ************ */
/* TrackRegion (new planar tracker) */
int libmv_trackRegion(const struct libmv_trackRegionOptions *options,
const float *image1, int image1_width, int image1_height,
const float *image2, int image2_width, int image2_height,
const double *x1, const double *y1,
struct libmv_trackRegionResult *result,
double *x2, double *y2)
{
double xx1[5], yy1[5];
double xx2[5], yy2[5];
bool tracking_result = false;
/* Convert to doubles for the libmv api. The four corners and the center. */
for (int i = 0; i < 5; ++i) {
xx1[i] = x1[i];
yy1[i] = y1[i];
xx2[i] = x2[i];
yy2[i] = y2[i];
}
libmv::TrackRegionOptions track_region_options;
libmv::FloatImage image1_mask;
switch (options->motion_model) {
#define LIBMV_CONVERT(the_model) \
case libmv::TrackRegionOptions::the_model: \
track_region_options.mode = libmv::TrackRegionOptions::the_model; \
break;
LIBMV_CONVERT(TRANSLATION)
LIBMV_CONVERT(TRANSLATION_ROTATION)
LIBMV_CONVERT(TRANSLATION_SCALE)
LIBMV_CONVERT(TRANSLATION_ROTATION_SCALE)
LIBMV_CONVERT(AFFINE)
LIBMV_CONVERT(HOMOGRAPHY)
#undef LIBMV_CONVERT
}
track_region_options.minimum_correlation = options->minimum_correlation;
track_region_options.max_iterations = options->num_iterations;
track_region_options.sigma = options->sigma;
track_region_options.num_extra_points = 1;
track_region_options.image1_mask = NULL;
track_region_options.use_brute_initialization = options->use_brute;
track_region_options.use_normalized_intensities = options->use_normalization;
if (options->image1_mask) {
floatBufToImage(options->image1_mask, image1_width, image1_height, 1, &image1_mask);
track_region_options.image1_mask = &image1_mask;
}
/* Convert from raw float buffers to libmv's FloatImage. */
libmv::FloatImage old_patch, new_patch;
floatBufToImage(image1, image1_width, image1_height, 1, &old_patch);
floatBufToImage(image2, image2_width, image2_height, 1, &new_patch);
libmv::TrackRegionResult track_region_result;
libmv::TrackRegion(old_patch, new_patch, xx1, yy1, track_region_options, xx2, yy2, &track_region_result);
/* Convert to floats for the blender api. */
for (int i = 0; i < 5; ++i) {
x2[i] = xx2[i];
y2[i] = yy2[i];
}
/* TODO(keir): Update the termination string with failure details. */
if (track_region_result.termination == libmv::TrackRegionResult::PARAMETER_TOLERANCE ||
track_region_result.termination == libmv::TrackRegionResult::FUNCTION_TOLERANCE ||
track_region_result.termination == libmv::TrackRegionResult::GRADIENT_TOLERANCE ||
track_region_result.termination == libmv::TrackRegionResult::NO_CONVERGENCE)
{
tracking_result = true;
}
#if defined(DUMP_FAILURE) || defined(DUMP_ALWAYS)
#if defined(DUMP_ALWAYS)
{
#else
if (!tracking_result) {
#endif
saveImage("old_patch", old_patch, x1[4], y1[4]);
saveImage("new_patch", new_patch, x2[4], y2[4]);
if (options->image1_mask)
saveImage("mask", image1_mask, x2[4], y2[4]);
}
#endif
return tracking_result;
}
void libmv_samplePlanarPatch(const float *image, int width, int height,
int channels, const double *xs, const double *ys,
int num_samples_x, int num_samples_y,
const float *mask, float *patch,
double *warped_position_x, double *warped_position_y)
{
libmv::FloatImage libmv_image, libmv_patch, libmv_mask;
libmv::FloatImage *libmv_mask_for_sample = NULL;
floatBufToImage(image, width, height, channels, &libmv_image);
if (mask) {
floatBufToImage(mask, width, height, 1, &libmv_mask);
libmv_mask_for_sample = &libmv_mask;
}
libmv::SamplePlanarPatch(libmv_image, xs, ys, num_samples_x, num_samples_y,
libmv_mask_for_sample, &libmv_patch,
warped_position_x, warped_position_y);
imageToFloatBuf(&libmv_patch, channels, patch);
}
/* ************ Tracks ************ */
libmv_Tracks *libmv_tracksNew(void)
{
libmv::Tracks *libmv_tracks = new libmv::Tracks();
return (libmv_Tracks *)libmv_tracks;
}
void libmv_tracksInsert(struct libmv_Tracks *libmv_tracks, int image, int track, double x, double y)
{
((libmv::Tracks*)libmv_tracks)->Insert(image, track, x, y);
}
void libmv_tracksDestroy(libmv_Tracks *libmv_tracks)
{
delete (libmv::Tracks*)libmv_tracks;
}
/* ************ Reconstruction solver ************ */
class ReconstructUpdateCallback : public libmv::ProgressUpdateCallback {
public:
ReconstructUpdateCallback(reconstruct_progress_update_cb progress_update_callback,
void *callback_customdata)
{
progress_update_callback_ = progress_update_callback;
callback_customdata_ = callback_customdata;
}
void invoke(double progress, const char *message)
{
if(progress_update_callback_) {
progress_update_callback_(callback_customdata_, progress, message);
}
}
protected:
reconstruct_progress_update_cb progress_update_callback_;
void *callback_customdata_;
};
int libmv_refineParametersAreValid(int parameters) {
return (parameters == (LIBMV_REFINE_FOCAL_LENGTH)) ||
(parameters == (LIBMV_REFINE_FOCAL_LENGTH |
LIBMV_REFINE_PRINCIPAL_POINT)) ||
(parameters == (LIBMV_REFINE_FOCAL_LENGTH |
LIBMV_REFINE_PRINCIPAL_POINT |
LIBMV_REFINE_RADIAL_DISTORTION_K1 |
LIBMV_REFINE_RADIAL_DISTORTION_K2)) ||
(parameters == (LIBMV_REFINE_FOCAL_LENGTH |
LIBMV_REFINE_RADIAL_DISTORTION_K1 |
LIBMV_REFINE_RADIAL_DISTORTION_K2)) ||
(parameters == (LIBMV_REFINE_FOCAL_LENGTH |
LIBMV_REFINE_RADIAL_DISTORTION_K1)) ||
(parameters == (LIBMV_REFINE_RADIAL_DISTORTION_K1 |
LIBMV_REFINE_RADIAL_DISTORTION_K2));
}
static void libmv_solveRefineIntrinsics(libmv::Tracks *tracks, libmv::CameraIntrinsics *intrinsics,
libmv::EuclideanReconstruction *reconstruction, int refine_intrinsics,
reconstruct_progress_update_cb progress_update_callback, void *callback_customdata,
int bundle_constraints = libmv::BUNDLE_NO_CONSTRAINTS)
{
/* only a few combinations are supported but trust the caller */
int libmv_refine_flags = 0;
if (refine_intrinsics & LIBMV_REFINE_FOCAL_LENGTH) {
libmv_refine_flags |= libmv::BUNDLE_FOCAL_LENGTH;
}
if (refine_intrinsics & LIBMV_REFINE_PRINCIPAL_POINT) {
libmv_refine_flags |= libmv::BUNDLE_PRINCIPAL_POINT;
}
if (refine_intrinsics & LIBMV_REFINE_RADIAL_DISTORTION_K1) {
libmv_refine_flags |= libmv::BUNDLE_RADIAL_K1;
}
if (refine_intrinsics & LIBMV_REFINE_RADIAL_DISTORTION_K2) {
libmv_refine_flags |= libmv::BUNDLE_RADIAL_K2;
}
progress_update_callback(callback_customdata, 1.0, "Refining solution");
libmv::EuclideanBundleCommonIntrinsics(*(libmv::Tracks *)tracks, libmv_refine_flags,
reconstruction, intrinsics, bundle_constraints);
}
static void cameraIntrinsicsFromOptions(libmv::CameraIntrinsics *camera_intrinsics,
libmv_cameraIntrinsicsOptions *camera_intrinsics_options)
{
camera_intrinsics->SetFocalLength(camera_intrinsics_options->focal_length,
camera_intrinsics_options->focal_length);
camera_intrinsics->SetPrincipalPoint(camera_intrinsics_options->principal_point_x,
camera_intrinsics_options->principal_point_y);
camera_intrinsics->SetRadialDistortion(camera_intrinsics_options->k1,
camera_intrinsics_options->k2,
camera_intrinsics_options->k3);
camera_intrinsics->SetImageSize(camera_intrinsics_options->image_width,
camera_intrinsics_options->image_height);
}
static libmv::Tracks getNormalizedTracks(libmv::Tracks *tracks, libmv::CameraIntrinsics *camera_intrinsics)
{
libmv::vector<libmv::Marker> markers = tracks->AllMarkers();
for (int i = 0; i < markers.size(); ++i) {
camera_intrinsics->InvertIntrinsics(markers[i].x, markers[i].y,
&(markers[i].x), &(markers[i].y));
}
return libmv::Tracks(markers);
}
static void finishReconstruction(libmv::Tracks *tracks, libmv::CameraIntrinsics *camera_intrinsics,
libmv_Reconstruction *libmv_reconstruction,
reconstruct_progress_update_cb progress_update_callback,
void *callback_customdata)
{
libmv::EuclideanReconstruction *reconstruction = &libmv_reconstruction->reconstruction;
/* reprojection error calculation */
progress_update_callback(callback_customdata, 1.0, "Finishing solution");
libmv_reconstruction->tracks = *tracks;
libmv_reconstruction->error = libmv::EuclideanReprojectionError(*tracks, *reconstruction, *camera_intrinsics);
}
libmv_Reconstruction *libmv_solveReconstruction(libmv_Tracks *libmv_tracks,
libmv_cameraIntrinsicsOptions *libmv_camera_intrinsics_options,
libmv_reconstructionOptions *libmv_reconstruction_options,
reconstruct_progress_update_cb progress_update_callback,
void *callback_customdata)
{
libmv_Reconstruction *libmv_reconstruction = new libmv_Reconstruction();
libmv::Tracks *tracks = ((libmv::Tracks *) libmv_tracks);
libmv::EuclideanReconstruction *reconstruction = &libmv_reconstruction->reconstruction;
libmv::CameraIntrinsics *camera_intrinsics = &libmv_reconstruction->intrinsics;
ReconstructUpdateCallback update_callback =
ReconstructUpdateCallback(progress_update_callback, callback_customdata);
cameraIntrinsicsFromOptions(camera_intrinsics, libmv_camera_intrinsics_options);
/* Invert the camera intrinsics */
libmv::Tracks normalized_tracks = getNormalizedTracks(tracks, camera_intrinsics);
/* actual reconstruction */
libmv::ReconstructionOptions reconstruction_options;
reconstruction_options.success_threshold = libmv_reconstruction_options->success_threshold;
reconstruction_options.use_fallback_reconstruction = libmv_reconstruction_options->use_fallback_reconstruction;
int keyframe1 = libmv_reconstruction_options->keyframe1,
keyframe2 = libmv_reconstruction_options->keyframe2;
LG << "frames to init from: " << keyframe1 << " " << keyframe2;
libmv::vector<libmv::Marker> keyframe_markers =
normalized_tracks.MarkersForTracksInBothImages(keyframe1, keyframe2);
LG << "number of markers for init: " << keyframe_markers.size();
update_callback.invoke(0, "Initial reconstruction");
libmv::EuclideanReconstructTwoFrames(keyframe_markers, reconstruction);
libmv::EuclideanBundle(normalized_tracks, reconstruction);
libmv::EuclideanCompleteReconstruction(reconstruction_options, normalized_tracks,
reconstruction, &update_callback);
/* refinement */
if (libmv_reconstruction_options->refine_intrinsics) {
libmv_solveRefineIntrinsics((libmv::Tracks *)tracks, camera_intrinsics, reconstruction,
libmv_reconstruction_options->refine_intrinsics,
progress_update_callback, callback_customdata);
}
/* set reconstruction scale to unity */
libmv::EuclideanScaleToUnity(reconstruction);
/* finish reconstruction */
finishReconstruction(tracks, camera_intrinsics, libmv_reconstruction,
progress_update_callback, callback_customdata);
return (libmv_Reconstruction *)libmv_reconstruction;
}
struct libmv_Reconstruction *libmv_solveModal(struct libmv_Tracks *libmv_tracks,
libmv_cameraIntrinsicsOptions *libmv_camera_intrinsics_options,
libmv_reconstructionOptions *libmv_reconstruction_options,
reconstruct_progress_update_cb progress_update_callback,
void *callback_customdata)
{
libmv_Reconstruction *libmv_reconstruction = new libmv_Reconstruction();
libmv::Tracks *tracks = ((libmv::Tracks *) libmv_tracks);
libmv::EuclideanReconstruction *reconstruction = &libmv_reconstruction->reconstruction;
libmv::CameraIntrinsics *camera_intrinsics = &libmv_reconstruction->intrinsics;
ReconstructUpdateCallback update_callback =
ReconstructUpdateCallback(progress_update_callback, callback_customdata);
cameraIntrinsicsFromOptions(camera_intrinsics, libmv_camera_intrinsics_options);
/* Invert the camera intrinsics. */
libmv::Tracks normalized_tracks = getNormalizedTracks(tracks, camera_intrinsics);
/* Actual reconstruction. */
libmv::ModalSolver(normalized_tracks, reconstruction, &update_callback);
libmv::CameraIntrinsics empty_intrinsics;
libmv::EuclideanBundleCommonIntrinsics(normalized_tracks,
libmv::BUNDLE_NO_INTRINSICS,
reconstruction,
&empty_intrinsics,
libmv::BUNDLE_NO_TRANSLATION);
/* Refinement. */
if (libmv_reconstruction_options->refine_intrinsics) {
libmv_solveRefineIntrinsics((libmv::Tracks *)tracks, camera_intrinsics, reconstruction,
libmv_reconstruction_options->refine_intrinsics,
progress_update_callback, callback_customdata,
libmv::BUNDLE_NO_TRANSLATION);
}
/* Finish reconstruction. */
finishReconstruction(tracks, camera_intrinsics, libmv_reconstruction,
progress_update_callback, callback_customdata);
return (libmv_Reconstruction *)libmv_reconstruction;
}
int libmv_reporojectionPointForTrack(libmv_Reconstruction *libmv_reconstruction, int track, double pos[3])
{
libmv::EuclideanReconstruction *reconstruction = &libmv_reconstruction->reconstruction;
libmv::EuclideanPoint *point = reconstruction->PointForTrack(track);
if(point) {
pos[0] = point->X[0];
pos[1] = point->X[2];
pos[2] = point->X[1];
return 1;
}
return 0;
}
static libmv::Marker ProjectMarker(const libmv::EuclideanPoint &point, const libmv::EuclideanCamera &camera,
const libmv::CameraIntrinsics &intrinsics) {
libmv::Vec3 projected = camera.R * point.X + camera.t;
projected /= projected(2);
libmv::Marker reprojected_marker;
intrinsics.ApplyIntrinsics(projected(0), projected(1), &reprojected_marker.x, &reprojected_marker.y);
reprojected_marker.image = camera.image;
reprojected_marker.track = point.track;
return reprojected_marker;
}
double libmv_reporojectionErrorForTrack(libmv_Reconstruction *libmv_reconstruction, int track)
{
libmv::EuclideanReconstruction *reconstruction = &libmv_reconstruction->reconstruction;
libmv::CameraIntrinsics *intrinsics = &libmv_reconstruction->intrinsics;
libmv::vector<libmv::Marker> markers = libmv_reconstruction->tracks.MarkersForTrack(track);
int num_reprojected = 0;
double total_error = 0.0;
for (int i = 0; i < markers.size(); ++i) {
const libmv::EuclideanCamera *camera = reconstruction->CameraForImage(markers[i].image);
const libmv::EuclideanPoint *point = reconstruction->PointForTrack(markers[i].track);
if (!camera || !point) {
continue;
}
num_reprojected++;
libmv::Marker reprojected_marker = ProjectMarker(*point, *camera, *intrinsics);
double ex = reprojected_marker.x - markers[i].x;
double ey = reprojected_marker.y - markers[i].y;
total_error += sqrt(ex*ex + ey*ey);
}
return total_error / num_reprojected;
}
double libmv_reporojectionErrorForImage(libmv_Reconstruction *libmv_reconstruction, int image)
{
libmv::EuclideanReconstruction *reconstruction = &libmv_reconstruction->reconstruction;
libmv::CameraIntrinsics *intrinsics = &libmv_reconstruction->intrinsics;
libmv::vector<libmv::Marker> markers = libmv_reconstruction->tracks.MarkersInImage(image);
const libmv::EuclideanCamera *camera = reconstruction->CameraForImage(image);
int num_reprojected = 0;
double total_error = 0.0;
if (!camera)
return 0;
for (int i = 0; i < markers.size(); ++i) {
const libmv::EuclideanPoint *point = reconstruction->PointForTrack(markers[i].track);
if (!point) {
continue;
}
num_reprojected++;
libmv::Marker reprojected_marker = ProjectMarker(*point, *camera, *intrinsics);
double ex = reprojected_marker.x - markers[i].x;
double ey = reprojected_marker.y - markers[i].y;
total_error += sqrt(ex*ex + ey*ey);
}
return total_error / num_reprojected;
}
int libmv_reporojectionCameraForImage(libmv_Reconstruction *libmv_reconstruction, int image, double mat[4][4])
{
libmv::EuclideanReconstruction *reconstruction = &libmv_reconstruction->reconstruction;
libmv::EuclideanCamera *camera = reconstruction->CameraForImage(image);
if(camera) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 3; ++k) {
int l = k;
if (k == 1) l = 2;
else if (k == 2) l = 1;
if (j == 2) mat[j][l] = -camera->R(j,k);
else mat[j][l] = camera->R(j,k);
}
mat[j][3]= 0.0;
}
libmv::Vec3 optical_center = -camera->R.transpose() * camera->t;
mat[3][0] = optical_center(0);
mat[3][1] = optical_center(2);
mat[3][2] = optical_center(1);
mat[3][3]= 1.0;
return 1;
}
return 0;
}
double libmv_reprojectionError(libmv_Reconstruction *libmv_reconstruction)
{
return libmv_reconstruction->error;
}
void libmv_destroyReconstruction(libmv_Reconstruction *libmv_reconstruction)
{
delete libmv_reconstruction;
}
/* ************ feature detector ************ */
struct libmv_Features *libmv_detectFeaturesFAST(unsigned char *data, int width, int height, int stride,
int margin, int min_trackness, int min_distance)
{
libmv::Feature *features = NULL;
std::vector<libmv::Feature> v;
libmv_Features *libmv_features = new libmv_Features();
int i= 0, count;
if(margin) {
data += margin*stride+margin;
width -= 2*margin;
height -= 2*margin;
}
v = libmv::DetectFAST(data, width, height, stride, min_trackness, min_distance);
count = v.size();
if(count) {
features= new libmv::Feature[count];
for(std::vector<libmv::Feature>::iterator it = v.begin(); it != v.end(); it++) {
features[i++]= *it;
}
}
libmv_features->features = features;
libmv_features->count = count;
libmv_features->margin = margin;
return (libmv_Features *)libmv_features;
}
struct libmv_Features *libmv_detectFeaturesMORAVEC(unsigned char *data, int width, int height, int stride,
int margin, int count, int min_distance)
{
libmv::Feature *features = NULL;
libmv_Features *libmv_features = new libmv_Features;
if(count) {
if(margin) {
data += margin*stride+margin;
width -= 2*margin;
height -= 2*margin;
}
features = new libmv::Feature[count];
libmv::DetectMORAVEC(data, stride, width, height, features, &count, min_distance, NULL);
}
libmv_features->count = count;
libmv_features->margin = margin;
libmv_features->features = features;
return libmv_features;
}
int libmv_countFeatures(struct libmv_Features *libmv_features)
{
return libmv_features->count;
}
void libmv_getFeature(struct libmv_Features *libmv_features, int number, double *x, double *y, double *score, double *size)
{
libmv::Feature feature= libmv_features->features[number];
*x = feature.x + libmv_features->margin;
*y = feature.y + libmv_features->margin;
*score = feature.score;
*size = feature.size;
}
void libmv_destroyFeatures(struct libmv_Features *libmv_features)
{
if(libmv_features->features)
delete [] libmv_features->features;
delete libmv_features;
}
/* ************ camera intrinsics ************ */
struct libmv_CameraIntrinsics *libmv_ReconstructionExtractIntrinsics(struct libmv_Reconstruction *libmv_Reconstruction) {
return (struct libmv_CameraIntrinsics *)&libmv_Reconstruction->intrinsics;
}
struct libmv_CameraIntrinsics *libmv_CameraIntrinsicsNewEmpty(void)
{
libmv::CameraIntrinsics *camera_intrinsics = new libmv::CameraIntrinsics();
return (struct libmv_CameraIntrinsics *) camera_intrinsics;
}
struct libmv_CameraIntrinsics *libmv_CameraIntrinsicsNew(libmv_cameraIntrinsicsOptions *libmv_camera_intrinsics_options)
{
libmv::CameraIntrinsics *camera_intrinsics = new libmv::CameraIntrinsics();
cameraIntrinsicsFromOptions(camera_intrinsics, libmv_camera_intrinsics_options);
return (struct libmv_CameraIntrinsics *) camera_intrinsics;
}
struct libmv_CameraIntrinsics *libmv_CameraIntrinsicsCopy(struct libmv_CameraIntrinsics *libmvIntrinsics)
{
libmv::CameraIntrinsics *orig_intrinsics = (libmv::CameraIntrinsics *) libmvIntrinsics;
libmv::CameraIntrinsics *new_intrinsics= new libmv::CameraIntrinsics(*orig_intrinsics);
return (struct libmv_CameraIntrinsics *) new_intrinsics;
}
void libmv_CameraIntrinsicsDestroy(struct libmv_CameraIntrinsics *libmvIntrinsics)
{
libmv::CameraIntrinsics *intrinsics = (libmv::CameraIntrinsics *) libmvIntrinsics;
delete intrinsics;
}
void libmv_CameraIntrinsicsUpdate(struct libmv_CameraIntrinsics *libmv_intrinsics,
libmv_cameraIntrinsicsOptions *libmv_camera_intrinsics_options)
{
libmv::CameraIntrinsics *camera_intrinsics = (libmv::CameraIntrinsics *) libmv_intrinsics;
double focal_length = libmv_camera_intrinsics_options->focal_length;
double principal_x = libmv_camera_intrinsics_options->principal_point_x;
double principal_y = libmv_camera_intrinsics_options->principal_point_y;
double k1 = libmv_camera_intrinsics_options->k1;
double k2 = libmv_camera_intrinsics_options->k2;
double k3 = libmv_camera_intrinsics_options->k3;
int image_width = libmv_camera_intrinsics_options->image_width;
int image_height = libmv_camera_intrinsics_options->image_height;
/* try avoid unnecessary updates so pre-computed distortion grids are not freed */
if (camera_intrinsics->focal_length() != focal_length)
camera_intrinsics->SetFocalLength(focal_length, focal_length);
if (camera_intrinsics->principal_point_x() != principal_x ||
camera_intrinsics->principal_point_y() != principal_y)
{
camera_intrinsics->SetPrincipalPoint(principal_x, principal_y);
}
if (camera_intrinsics->k1() != k1 ||
camera_intrinsics->k2() != k2 ||
camera_intrinsics->k3() != k3)
{
camera_intrinsics->SetRadialDistortion(k1, k2, k3);
}
if (camera_intrinsics->image_width() != image_width ||
camera_intrinsics->image_height() != image_height)
{
camera_intrinsics->SetImageSize(image_width, image_height);
}
}
void libmv_CameraIntrinsicsSetThreads(struct libmv_CameraIntrinsics *libmv_intrinsics, int threads)
{
libmv::CameraIntrinsics *camera_intrinsics = (libmv::CameraIntrinsics *) libmv_intrinsics;
camera_intrinsics->SetThreads(threads);
}
void libmv_CameraIntrinsicsExtract(struct libmv_CameraIntrinsics *libmv_intrinsics, double *focal_length,
double *principal_x, double *principal_y, double *k1, double *k2, double *k3, int *width, int *height)
{
libmv::CameraIntrinsics *camera_intrinsics = (libmv::CameraIntrinsics *) libmv_intrinsics;
*focal_length = camera_intrinsics->focal_length();
*principal_x = camera_intrinsics->principal_point_x();
*principal_y = camera_intrinsics->principal_point_y();
*k1 = camera_intrinsics->k1();
*k2 = camera_intrinsics->k2();
}
void libmv_CameraIntrinsicsUndistortByte(struct libmv_CameraIntrinsics *libmv_intrinsics,
unsigned char *src, unsigned char *dst, int width, int height, float overscan, int channels)
{
libmv::CameraIntrinsics *camera_intrinsics = (libmv::CameraIntrinsics *) libmv_intrinsics;
camera_intrinsics->Undistort(src, dst, width, height, overscan, channels);
}
void libmv_CameraIntrinsicsUndistortFloat(struct libmv_CameraIntrinsics *libmvIntrinsics,
float *src, float *dst, int width, int height, float overscan, int channels)
{
libmv::CameraIntrinsics *intrinsics = (libmv::CameraIntrinsics *) libmvIntrinsics;
intrinsics->Undistort(src, dst, width, height, overscan, channels);
}
void libmv_CameraIntrinsicsDistortByte(struct libmv_CameraIntrinsics *libmvIntrinsics,
unsigned char *src, unsigned char *dst, int width, int height, float overscan, int channels)
{
libmv::CameraIntrinsics *intrinsics = (libmv::CameraIntrinsics *) libmvIntrinsics;
intrinsics->Distort(src, dst, width, height, overscan, channels);
}
void libmv_CameraIntrinsicsDistortFloat(struct libmv_CameraIntrinsics *libmvIntrinsics,
float *src, float *dst, int width, int height, float overscan, int channels)
{
libmv::CameraIntrinsics *intrinsics = (libmv::CameraIntrinsics *) libmvIntrinsics;
intrinsics->Distort(src, dst, width, height, overscan, channels);
}
/* ************ utils ************ */
void libmv_applyCameraIntrinsics(libmv_cameraIntrinsicsOptions *libmv_camera_intrinsics_options,
double x, double y, double *x1, double *y1)
{
libmv::CameraIntrinsics camera_intrinsics;
cameraIntrinsicsFromOptions(&camera_intrinsics, libmv_camera_intrinsics_options);
if (libmv_camera_intrinsics_options->focal_length) {
/* do a lens undistortion if focal length is non-zero only */
camera_intrinsics.ApplyIntrinsics(x, y, x1, y1);
}
}
void libmv_InvertIntrinsics(libmv_cameraIntrinsicsOptions *libmv_camera_intrinsics_options,
double x, double y, double *x1, double *y1)
{
libmv::CameraIntrinsics camera_intrinsics;
cameraIntrinsicsFromOptions(&camera_intrinsics, libmv_camera_intrinsics_options);
if (libmv_camera_intrinsics_options->focal_length) {
/* do a lens distortion if focal length is non-zero only */
camera_intrinsics.InvertIntrinsics(x, y, x1, y1);
}
}