blender/source/gameengine/Ketsji/KX_TrackToActuator.cpp
Benoit Bolsee 9ed079bf5c BGE patch: Relink actuators with target within group when duplicating group; generalize protection against object deletion for all actuators that point to objects.
Certain actuators hold a pointer to an objects: Property,
SceneCamera, AddObject, Camera, Parent, TractTo. When a
group is duplicated, the actuators that point to objects
within the group will be relinked to point to the
replicated objects and not to the original objects.
This helps to setup self-contained group with a camera
following a character for example.
This feature also works when adding a single object
(and all its children) with the AddObject actuator.

The second part of the patch extends the protection
against object deletion to all the actuators of the above
list (previously, only the TrackTo, AddObject and
Property actuators were protected). In case the target
object of these actuators is deleted, the BGE won't
crash.
2008-07-19 07:45:19 +00:00

577 lines
13 KiB
C++

//
// Replace the mesh for this actuator's parent
//
// $Id$
//
// ***** BEGIN GPL LICENSE BLOCK *****
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
// The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
// All rights reserved.
//
// The Original Code is: all of this file.
//
// Contributor(s): none yet.
//
// ***** END GPL LICENSE BLOCK *****
// todo: not all trackflags / upflags are implemented/tested !
// m_trackflag is used to determine the forward tracking direction
// m_upflag for the up direction
// normal situation is +y for forward, +z for up
#include "MT_Scalar.h"
#include "SCA_IActuator.h"
#include "KX_TrackToActuator.h"
#include "SCA_IScene.h"
#include "SCA_LogicManager.h"
#include <math.h>
#include <iostream>
#include "KX_GameObject.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/* ------------------------------------------------------------------------- */
/* Native functions */
/* ------------------------------------------------------------------------- */
KX_TrackToActuator::KX_TrackToActuator(SCA_IObject *gameobj,
SCA_IObject *ob,
int time,
bool allow3D,
int trackflag,
int upflag,
PyTypeObject* T)
:
SCA_IActuator(gameobj, T)
{
m_time = time;
m_allow3D = allow3D;
m_object = ob;
m_trackflag = trackflag;
m_upflag = upflag;
m_parentobj = 0;
if (m_object)
m_object->RegisterActuator(this);
if (gameobj->isA(&KX_GameObject::Type))
{
// if the object is vertex parented, don't check parent orientation as the link is broken
if (!((KX_GameObject*)gameobj)->IsVertexParent()){
m_parentobj = ((KX_GameObject*)gameobj)->GetParent(); // check if the object is parented
if (m_parentobj) {
// if so, store the initial local rotation
// this is needed to revert the effect of the parent inverse node (TBC)
m_parentlocalmat = m_parentobj->GetSGNode()->GetLocalOrientation();
}
}
}
} /* End of constructor */
/* old function from Blender */
MT_Matrix3x3 EulToMat3(float *eul)
{
MT_Matrix3x3 mat;
float ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
ci = cos(eul[0]);
cj = cos(eul[1]);
ch = cos(eul[2]);
si = sin(eul[0]);
sj = sin(eul[1]);
sh = sin(eul[2]);
cc = ci*ch;
cs = ci*sh;
sc = si*ch;
ss = si*sh;
mat[0][0] = cj*ch;
mat[1][0] = sj*sc-cs;
mat[2][0] = sj*cc+ss;
mat[0][1] = cj*sh;
mat[1][1] = sj*ss+cc;
mat[2][1] = sj*cs-sc;
mat[0][2] = -sj;
mat[1][2] = cj*si;
mat[2][2] = cj*ci;
return mat;
}
/* old function from Blender */
void Mat3ToEulOld(MT_Matrix3x3 mat, float *eul)
{
MT_Scalar cy;
cy = sqrt(mat[0][0]*mat[0][0] + mat[0][1]*mat[0][1]);
if (cy > 16.0*FLT_EPSILON) {
eul[0] = atan2(mat[1][2], mat[2][2]);
eul[1] = atan2(-mat[0][2], cy);
eul[2] = atan2(mat[0][1], mat[0][0]);
} else {
eul[0] = atan2(-mat[2][1], mat[1][1]);
eul[1] = atan2(-mat[0][2], cy);
eul[2] = 0.0;
}
}
/* old function from Blender */
void compatible_eulFast(float *eul, float *oldrot)
{
float dx, dy, dz;
/* verschillen van ong 360 graden corrigeren */
dx= eul[0] - oldrot[0];
dy= eul[1] - oldrot[1];
dz= eul[2] - oldrot[2];
if( fabs(dx) > 5.1) {
if(dx > 0.0) eul[0] -= MT_2_PI; else eul[0]+= MT_2_PI;
}
if( fabs(dy) > 5.1) {
if(dy > 0.0) eul[1] -= MT_2_PI; else eul[1]+= MT_2_PI;
}
if( fabs(dz) > 5.1 ) {
if(dz > 0.0) eul[2] -= MT_2_PI; else eul[2]+= MT_2_PI;
}
}
MT_Matrix3x3 matrix3x3_interpol(MT_Matrix3x3 oldmat, MT_Matrix3x3 mat, int m_time)
{
float eul[3], oldeul[3];
Mat3ToEulOld(oldmat, oldeul);
Mat3ToEulOld(mat, eul);
compatible_eulFast(eul, oldeul);
eul[0]= (m_time*oldeul[0] + eul[0])/(1.0+m_time);
eul[1]= (m_time*oldeul[1] + eul[1])/(1.0+m_time);
eul[2]= (m_time*oldeul[2] + eul[2])/(1.0+m_time);
return EulToMat3(eul);
}
KX_TrackToActuator::~KX_TrackToActuator()
{
if (m_object)
m_object->UnregisterActuator(this);
if (m_parentobj)
m_parentobj->Release();
} /* end of destructor */
void KX_TrackToActuator::ProcessReplica()
{
// the replica is tracking the same object => register it
if (m_object)
m_object->RegisterActuator(this);
SCA_IActuator::ProcessReplica();
}
bool KX_TrackToActuator::UnlinkObject(SCA_IObject* clientobj)
{
if (clientobj == m_object)
{
// this object is being deleted, we cannot continue to track it.
m_object = NULL;
return true;
}
return false;
}
void KX_TrackToActuator::Relink(GEN_Map<GEN_HashedPtr, void*> *obj_map)
{
void **h_obj = (*obj_map)[m_object];
if (h_obj) {
if (m_object)
m_object->UnregisterActuator(this);
m_object = (SCA_IObject*)(*h_obj);
m_object->RegisterActuator(this);
}
}
bool KX_TrackToActuator::Update(double curtime, bool frame)
{
bool result = false;
bool bNegativeEvent = IsNegativeEvent();
RemoveAllEvents();
if (bNegativeEvent)
{
// do nothing on negative events
}
else if (m_object)
{
KX_GameObject* curobj = (KX_GameObject*) GetParent();
MT_Vector3 dir = ((KX_GameObject*)m_object)->NodeGetWorldPosition() - curobj->NodeGetWorldPosition();
if (dir.length2())
dir.normalize();
MT_Vector3 up(0,0,1);
#ifdef DSADSA
switch (m_upflag)
{
case 0:
{
up = MT_Vector3(1.0,0,0);
break;
}
case 1:
{
up = MT_Vector3(0,1.0,0);
break;
}
case 2:
default:
{
up = MT_Vector3(0,0,1.0);
}
}
#endif
if (m_allow3D)
{
up = (up - up.dot(dir) * dir).safe_normalized();
}
else
{
dir = (dir - up.dot(dir)*up).safe_normalized();
}
MT_Vector3 left;
MT_Matrix3x3 mat;
switch (m_trackflag)
{
case 0: // TRACK X
{
// (1.0 , 0.0 , 0.0 ) x direction is forward, z (0.0 , 0.0 , 1.0 ) up
left = dir.safe_normalized();
dir = (left.cross(up)).safe_normalized();
mat.setValue (
left[0], dir[0],up[0],
left[1], dir[1],up[1],
left[2], dir[2],up[2]
);
break;
};
case 1: // TRACK Y
{
// (0.0 , 1.0 , 0.0 ) y direction is forward, z (0.0 , 0.0 , 1.0 ) up
left = (dir.cross(up)).safe_normalized();
mat.setValue (
left[0], dir[0],up[0],
left[1], dir[1],up[1],
left[2], dir[2],up[2]
);
break;
}
case 2: // track Z
{
left = up.safe_normalized();
up = dir.safe_normalized();
dir = left;
left = (dir.cross(up)).safe_normalized();
mat.setValue (
left[0], dir[0],up[0],
left[1], dir[1],up[1],
left[2], dir[2],up[2]
);
break;
}
case 3: // TRACK -X
{
// (1.0 , 0.0 , 0.0 ) x direction is forward, z (0.0 , 0.0 , 1.0 ) up
left = -dir.safe_normalized();
dir = -(left.cross(up)).safe_normalized();
mat.setValue (
left[0], dir[0],up[0],
left[1], dir[1],up[1],
left[2], dir[2],up[2]
);
break;
};
case 4: // TRACK -Y
{
// (0.0 , -1.0 , 0.0 ) -y direction is forward, z (0.0 , 0.0 , 1.0 ) up
left = (-dir.cross(up)).safe_normalized();
mat.setValue (
left[0], -dir[0],up[0],
left[1], -dir[1],up[1],
left[2], -dir[2],up[2]
);
break;
}
case 5: // track -Z
{
left = up.safe_normalized();
up = -dir.safe_normalized();
dir = left;
left = (dir.cross(up)).safe_normalized();
mat.setValue (
left[0], dir[0],up[0],
left[1], dir[1],up[1],
left[2], dir[2],up[2]
);
break;
}
default:
{
// (1.0 , 0.0 , 0.0 ) -x direction is forward, z (0.0 , 0.0 , 1.0 ) up
left = -dir.safe_normalized();
dir = -(left.cross(up)).safe_normalized();
mat.setValue (
left[0], dir[0],up[0],
left[1], dir[1],up[1],
left[2], dir[2],up[2]
);
}
}
MT_Matrix3x3 oldmat;
oldmat= curobj->NodeGetWorldOrientation();
/* erwin should rewrite this! */
mat= matrix3x3_interpol(oldmat, mat, m_time);
if(m_parentobj){ // check if the model is parented and calculate the child transform
MT_Point3 localpos;
localpos = curobj->GetSGNode()->GetLocalPosition();
// Get the inverse of the parent matrix
MT_Matrix3x3 parentmatinv;
parentmatinv = m_parentobj->NodeGetWorldOrientation ().inverse ();
// transform the local coordinate system into the parents system
mat = parentmatinv * mat;
// append the initial parent local rotation matrix
mat = m_parentlocalmat * mat;
// set the models tranformation properties
curobj->NodeSetLocalOrientation(mat);
curobj->NodeSetLocalPosition(localpos);
curobj->UpdateTransform();
}
else
{
curobj->NodeSetLocalOrientation(mat);
}
result = true;
}
return result;
}
/* ------------------------------------------------------------------------- */
/* Python functions */
/* ------------------------------------------------------------------------- */
/* Integration hooks ------------------------------------------------------- */
PyTypeObject KX_TrackToActuator::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"KX_TrackToActuator",
sizeof(KX_TrackToActuator),
0,
PyDestructor,
0,
__getattr,
__setattr,
0, //&MyPyCompare,
__repr,
0, //&cvalue_as_number,
0,
0,
0,
0
};
PyParentObject KX_TrackToActuator::Parents[] = {
&KX_TrackToActuator::Type,
&SCA_IActuator::Type,
&SCA_ILogicBrick::Type,
&CValue::Type,
NULL
};
PyMethodDef KX_TrackToActuator::Methods[] = {
{"setObject", (PyCFunction) KX_TrackToActuator::sPySetObject, METH_VARARGS, SetObject_doc},
{"getObject", (PyCFunction) KX_TrackToActuator::sPyGetObject, METH_VARARGS, GetObject_doc},
{"setTime", (PyCFunction) KX_TrackToActuator::sPySetTime, METH_VARARGS, SetTime_doc},
{"getTime", (PyCFunction) KX_TrackToActuator::sPyGetTime, METH_VARARGS, GetTime_doc},
{"setUse3D", (PyCFunction) KX_TrackToActuator::sPySetUse3D, METH_VARARGS, SetUse3D_doc},
{"getUse3D", (PyCFunction) KX_TrackToActuator::sPyGetUse3D, METH_VARARGS, GetUse3D_doc},
{NULL,NULL} //Sentinel
};
PyObject* KX_TrackToActuator::_getattr(const STR_String& attr)
{
_getattr_up(SCA_IActuator);
}
/* 1. setObject */
char KX_TrackToActuator::SetObject_doc[] =
"setObject(object)\n"
"\t- object: string\n"
"\tSet the object to track with the parent of this actuator.\n";
PyObject* KX_TrackToActuator::PySetObject(PyObject* self, PyObject* args, PyObject* kwds) {
PyObject* gameobj;
if (PyArg_ParseTuple(args, "O!", &KX_GameObject::Type, &gameobj))
{
if (m_object != NULL)
m_object->UnregisterActuator(this);
m_object = (SCA_IObject*)gameobj;
if (m_object)
m_object->RegisterActuator(this);
Py_Return;
}
PyErr_Clear();
char* objectname;
if (PyArg_ParseTuple(args, "s", &objectname))
{
if (m_object != NULL)
m_object->UnregisterActuator(this);
m_object= static_cast<SCA_IObject*>(SCA_ILogicBrick::m_sCurrentLogicManager->GetGameObjectByName(STR_String(objectname)));
if (m_object)
m_object->RegisterActuator(this);
Py_Return;
}
return NULL;
}
/* 2. getObject */
char KX_TrackToActuator::GetObject_doc[] =
"getObject()\n"
"\tReturns the object to track with the parent of this actuator.\n";
PyObject* KX_TrackToActuator::PyGetObject(PyObject* self, PyObject* args, PyObject* kwds)
{
if (!m_object)
Py_Return;
return PyString_FromString(m_object->GetName());
}
/* 3. setTime */
char KX_TrackToActuator::SetTime_doc[] =
"setTime(time)\n"
"\t- time: integer\n"
"\tSet the time in frames with which to delay the tracking motion.\n";
PyObject* KX_TrackToActuator::PySetTime(PyObject* self, PyObject* args, PyObject* kwds)
{
int timeArg;
if (!PyArg_ParseTuple(args, "i", &timeArg))
{
return NULL;
}
m_time= timeArg;
Py_Return;
}
/* 4.getTime */
char KX_TrackToActuator::GetTime_doc[] =
"getTime()\n"
"\t- time: integer\n"
"\tReturn the time in frames with which the tracking motion is delayed.\n";
PyObject* KX_TrackToActuator::PyGetTime(PyObject* self, PyObject* args, PyObject* kwds)
{
return PyInt_FromLong(m_time);
}
/* 5. getUse3D */
char KX_TrackToActuator::GetUse3D_doc[] =
"getUse3D()\n"
"\tReturns 1 if the motion is allowed to extend in the z-direction.\n";
PyObject* KX_TrackToActuator::PyGetUse3D(PyObject* self, PyObject* args, PyObject* kwds)
{
return PyInt_FromLong(!(m_allow3D == 0));
}
/* 6. setUse3D */
char KX_TrackToActuator::SetUse3D_doc[] =
"setUse3D(value)\n"
"\t- value: 0 or 1\n"
"\tSet to 1 to allow the tracking motion to extend in the z-direction,\n"
"\tset to 0 to lock the tracking motion to the x-y plane.\n";
PyObject* KX_TrackToActuator::PySetUse3D(PyObject* self, PyObject* args, PyObject* kwds)
{
int boolArg;
if (!PyArg_ParseTuple(args, "i", &boolArg)) {
return NULL;
}
m_allow3D = !(boolArg == 0);
Py_Return;
}
/* eof */