blender/intern/cycles/kernel/kernel_shadow_blocked.cl
George Kyriazis 7f4479da42 Cycles: OpenCL kernel split
This commit contains all the work related on the AMD megakernel split work
which was mainly done by Varun Sundar, George Kyriazis and Lenny Wang, plus
some help from Sergey Sharybin, Martijn Berger, Thomas Dinges and likely
someone else which we're forgetting to mention.

Currently only AMD cards are enabled for the new split kernel, but it is
possible to force split opencl kernel to be used by setting the following
environment variable: CYCLES_OPENCL_SPLIT_KERNEL_TEST=1.

Not all the features are supported yet, and that being said no motion blur,
camera blur, SSS and volumetrics for now. Also transparent shadows are
disabled on AMD device because of some compiler bug.

This kernel is also only implements regular path tracing and supporting
branched one will take a bit. Branched path tracing is exposed to the
interface still, which is a bit misleading and will be hidden there soon.

More feature will be enabled once they're ported to the split kernel and
tested.

Neither regular CPU nor CUDA has any difference, they're generating the
same exact code, which means no regressions/improvements there.

Based on the research paper:

  https://research.nvidia.com/sites/default/files/publications/laine2013hpg_paper.pdf

Here's the documentation:

  https://docs.google.com/document/d/1LuXW-CV-sVJkQaEGZlMJ86jZ8FmoPfecaMdR-oiWbUY/edit

Design discussion of the patch:

  https://developer.blender.org/T44197

Differential Revision: https://developer.blender.org/D1200
2015-05-09 19:52:40 +05:00

127 lines
6.0 KiB
Common Lisp

/*
* Copyright 2011-2015 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel_split.h"
/*
* Note on kernel_ocl_path_trace_shadow_blocked kernel.
* This is the ninth kernel in the ray tracing logic. This is the eighth
* of the path iteration kernels. This kernel takes care of "shadow ray cast"
* logic of the direct lighting and AO part of ray tracing.
*
* The input and output are as follows,
*
* PathState_coop ----------------------------------|--- kernel_ocl_path_trace_shadow_blocked --|
* LightRay_dl_coop --------------------------------| |--- LightRay_dl_coop
* LightRay_ao_coop --------------------------------| |--- LightRay_ao_coop
* ray_state ---------------------------------------| |--- ray_state
* Queue_data(QUEUE_SHADOW_RAY_CAST_AO_RAYS & | |--- Queue_data (QUEUE_SHADOW_RAY_CAST_AO_RAYS & QUEUE_SHADOW_RAY_CAST_AO_RAYS)
QUEUE_SHADOW_RAY_CAST_DL_RAYS) -------| |
* Queue_index(QUEUE_SHADOW_RAY_CAST_AO_RAYS&
QUEUE_SHADOW_RAY_CAST_DL_RAYS) -------| |
* kg (globals + data) -----------------------------| |
* queuesize ---------------------------------------| |
*
* Note on shader_shadow : shader_shadow is neither input nor output to this kernel. shader_shadow is filled and consumed in this kernel itself.
* Note on queues :
* The kernel fetches from QUEUE_SHADOW_RAY_CAST_AO_RAYS and QUEUE_SHADOW_RAY_CAST_DL_RAYS queues. We will empty
* these queues this kernel.
* State of queues when this kernel is called :
* state of queues QUEUE_ACTIVE_AND_REGENERATED_RAYS and QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be same
* before and after this kernel call.
* QUEUE_SHADOW_RAY_CAST_AO_RAYS & QUEUE_SHADOW_RAY_CAST_DL_RAYS will be filled with rays marked with flags RAY_SHADOW_RAY_CAST_AO
* and RAY_SHADOW_RAY_CAST_DL respectively, during kernel entry.
* QUEUE_SHADOW_RAY_CAST_AO_RAYS and QUEUE_SHADOW_RAY_CAST_DL_RAYS will be empty at kernel exit.
*/
__kernel void kernel_ocl_path_trace_shadow_blocked_direct_lighting(
ccl_global char *globals,
ccl_constant KernelData *data,
ccl_global char *shader_shadow, /* Required for shadow blocked */
ccl_global PathState *PathState_coop, /* Required for shadow blocked */
ccl_global Ray *LightRay_dl_coop, /* Required for direct lighting's shadow blocked */
ccl_global Ray *LightRay_ao_coop, /* Required for AO's shadow blocked */
Intersection *Intersection_coop_AO,
Intersection *Intersection_coop_DL,
ccl_global char *ray_state,
ccl_global int *Queue_data, /* Queue memory */
ccl_global int *Queue_index, /* Tracks the number of elements in each queue */
int queuesize, /* Size (capacity) of each queue */
int total_num_rays
)
{
#if 0
/* we will make the Queue_index entries '0' in the next kernel */
if(get_global_id(0) == 0 && get_global_id(1) == 0) {
/* We empty this queue here */
Queue_index[QUEUE_SHADOW_RAY_CAST_AO_RAYS] = 0;
Queue_index[QUEUE_SHADOW_RAY_CAST_DL_RAYS] = 0;
}
#endif
int lidx = get_local_id(1) * get_local_id(0) + get_local_id(0);
ccl_local unsigned int ao_queue_length;
ccl_local unsigned int dl_queue_length;
if(lidx == 0) {
ao_queue_length = Queue_index[QUEUE_SHADOW_RAY_CAST_AO_RAYS];
dl_queue_length = Queue_index[QUEUE_SHADOW_RAY_CAST_DL_RAYS];
}
barrier(CLK_LOCAL_MEM_FENCE);
/* flag determining if the current ray is to process shadow ray for AO or DL */
char shadow_blocked_type = -1;
/* flag determining if we need to update L */
char update_path_radiance = 0;
int ray_index = QUEUE_EMPTY_SLOT;
int thread_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
if(thread_index < ao_queue_length + dl_queue_length) {
if(thread_index < ao_queue_length) {
ray_index = get_ray_index(thread_index, QUEUE_SHADOW_RAY_CAST_AO_RAYS, Queue_data, queuesize, 1);
shadow_blocked_type = RAY_SHADOW_RAY_CAST_AO;
} else {
ray_index = get_ray_index(thread_index - ao_queue_length, QUEUE_SHADOW_RAY_CAST_DL_RAYS, Queue_data, queuesize, 1);
shadow_blocked_type = RAY_SHADOW_RAY_CAST_DL;
}
}
if(ray_index == QUEUE_EMPTY_SLOT)
return;
if(IS_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_DL) || IS_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_AO)) {
/* Load kernel global structure */
KernelGlobals *kg = (KernelGlobals *)globals;
ShaderData *sd_shadow = (ShaderData *)shader_shadow;
ccl_global PathState *state = &PathState_coop[ray_index];
ccl_global Ray *light_ray_dl_global = &LightRay_dl_coop[ray_index];
ccl_global Ray *light_ray_ao_global = &LightRay_ao_coop[ray_index];
Intersection *isect_ao_global = &Intersection_coop_AO[ray_index];
Intersection *isect_dl_global = &Intersection_coop_DL[ray_index];
ccl_global Ray *light_ray_global = shadow_blocked_type == RAY_SHADOW_RAY_CAST_AO ? light_ray_ao_global : light_ray_dl_global;
Intersection *isect_global = RAY_SHADOW_RAY_CAST_AO ? isect_ao_global : isect_dl_global;
float3 shadow;
update_path_radiance = !(shadow_blocked(kg, state, light_ray_global, &shadow, sd_shadow, isect_global));
/* We use light_ray_global's P and t to store shadow and update_path_radiance */
light_ray_global->P = shadow;
light_ray_global->t = update_path_radiance;
}
}