blender/release/scripts/modules/rigify/palm.py

131 lines
4.2 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ##### END GPL LICENSE BLOCK #####
import bpy
from rigify import get_bone_data, copy_bone_simple
from rna_prop_ui import rna_idprop_ui_get, rna_idprop_ui_prop_get
def main(obj, orig_bone_name):
arm, palm_pbone, palm_ebone = get_bone_data(obj, orig_bone_name)
children = [ebone.name for ebone in palm_ebone.children]
children.sort() # simply assume the pinky has the lowest name
# Make a copy of the pinky
pinky_ebone = arm.edit_bones[children[0]]
control_ebone = copy_bone_simple(arm, pinky_ebone.name, "palm_control", parent=True)
control_name = control_ebone.name
offset = (arm.edit_bones[children[0]].head - arm.edit_bones[children[1]].head)
control_ebone.head += offset
control_ebone.tail += offset
bpy.ops.object.mode_set(mode='OBJECT')
arm, control_pbone, control_ebone = get_bone_data(obj, control_name)
arm, pinky_pbone, pinky_ebone = get_bone_data(obj, children[0])
control_pbone.rotation_mode = 'YZX'
control_pbone.lock_rotation = False, True, True
driver_fcurves = pinky_pbone.driver_add("rotation_euler")
controller_path = control_pbone.path_to_id()
# add custom prop
control_pbone["spread"] = 0.0
prop = rna_idprop_ui_prop_get(control_pbone, "spread", create=True)
prop["soft_min"] = -1.0
prop["soft_max"] = 1.0
# *****
driver = driver_fcurves[0].driver
driver.type = 'AVERAGE'
tar = driver.targets.new()
tar.name = "x"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = controller_path + ".rotation_euler[0]"
# *****
driver = driver_fcurves[1].driver
driver.expression = "-x/4.0"
tar = driver.targets.new()
tar.name = "x"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = controller_path + ".rotation_euler[0]"
# *****
driver = driver_fcurves[2].driver
driver.expression = "(1.0-cos(x))-s"
tar = driver.targets.new()
tar.name = "x"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = controller_path + ".rotation_euler[0]"
tar = driver.targets.new()
tar.name = "s"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = controller_path + '["spread"]'
for i, child_name in enumerate(children):
child_pbone = obj.pose.bones[child_name]
child_pbone.rotation_mode = 'YZX'
if child_name != children[-1] and child_name != children[0]:
# this is somewhat arbitrary but seems to look good
inf = i / (len(children)+1)
inf = 1.0 - inf
inf = ((inf * inf) + inf) / 2.0
# used for X/Y constraint
inf_minor = inf * inf
con = child_pbone.constraints.new('COPY_ROTATION')
con.name = "Copy Z Rot"
con.target = obj
con.subtarget = children[0] # also pinky_pbone
con.owner_space = con.target_space = 'LOCAL'
con.use_x, con.use_y, con.use_z = False, False, True
con.influence = inf
con = child_pbone.constraints.new('COPY_ROTATION')
con.name = "Copy XY Rot"
con.target = obj
con.subtarget = children[0] # also pinky_pbone
con.owner_space = con.target_space = 'LOCAL'
con.use_x, con.use_y, con.use_z = True, True, False
con.influence = inf_minor
child_pbone = obj.pose.bones[children[-1]]
child_pbone.rotation_mode = 'QUATERNION'