forked from bartvdbraak/blender
343 lines
10 KiB
Python
343 lines
10 KiB
Python
# ##### BEGIN GPL LICENSE BLOCK #####
|
|
#
|
|
# This program is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU General Public License
|
|
# as published by the Free Software Foundation; either version 2
|
|
# of the License, or (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program; if not, write to the Free Software Foundation,
|
|
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
#
|
|
# ##### END GPL LICENSE BLOCK #####
|
|
|
|
# Filename : PredicatesU1D.py
|
|
# Authors : Fredo Durand, Stephane Grabli, Francois Sillion, Emmanuel Turquin
|
|
# Date : 08/04/2005
|
|
# Purpose : Unary predicates (functors) to be used for 1D elements
|
|
|
|
from freestyle import Curvature2DAngleF0D, CurveNatureF1D, DensityF1D, GetCompleteViewMapDensityF1D, \
|
|
GetDirectionalViewMapDensityF1D, GetOccludersF1D, GetProjectedZF1D, GetShapeF1D, GetSteerableViewMapDensityF1D, \
|
|
IntegrationType, ShapeUP1D, TVertex, UnaryPredicate1D
|
|
from Functions1D import pyDensityAnisotropyF1D, pyViewMapGradientNormF1D
|
|
|
|
class pyNFirstUP1D(UnaryPredicate1D):
|
|
def __init__(self, n):
|
|
UnaryPredicate1D.__init__(self)
|
|
self.__n = n
|
|
self.__count = 0
|
|
def __call__(self, inter):
|
|
self.__count = self.__count + 1
|
|
if self.__count <= self.__n:
|
|
return 1
|
|
return 0
|
|
|
|
class pyHigherLengthUP1D(UnaryPredicate1D):
|
|
def __init__(self,l):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._l = l
|
|
def __call__(self, inter):
|
|
return (inter.length_2d > self._l)
|
|
|
|
class pyNatureUP1D(UnaryPredicate1D):
|
|
def __init__(self,nature):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._nature = nature
|
|
self._getNature = CurveNatureF1D()
|
|
def __call__(self, inter):
|
|
if(self._getNature(inter) & self._nature):
|
|
return 1
|
|
return 0
|
|
|
|
class pyHigherNumberOfTurnsUP1D(UnaryPredicate1D):
|
|
def __init__(self,n,a):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._n = n
|
|
self._a = a
|
|
def __call__(self, inter):
|
|
count = 0
|
|
func = Curvature2DAngleF0D()
|
|
it = inter.vertices_begin()
|
|
while not it.is_end:
|
|
if func(it) > self._a:
|
|
count = count+1
|
|
if count > self._n:
|
|
return 1
|
|
it.increment()
|
|
return 0
|
|
|
|
class pyDensityUP1D(UnaryPredicate1D):
|
|
def __init__(self,wsize,threshold, integration = IntegrationType.MEAN, sampling=2.0):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._wsize = wsize
|
|
self._threshold = threshold
|
|
self._integration = integration
|
|
self._func = DensityF1D(self._wsize, self._integration, sampling)
|
|
def __call__(self, inter):
|
|
if self._func(inter) < self._threshold:
|
|
return 1
|
|
return 0
|
|
|
|
class pyLowSteerableViewMapDensityUP1D(UnaryPredicate1D):
|
|
def __init__(self,threshold, level,integration = IntegrationType.MEAN):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._threshold = threshold
|
|
self._level = level
|
|
self._integration = integration
|
|
def __call__(self, inter):
|
|
func = GetSteerableViewMapDensityF1D(self._level, self._integration)
|
|
v = func(inter)
|
|
print(v)
|
|
if v < self._threshold:
|
|
return 1
|
|
return 0
|
|
|
|
class pyLowDirectionalViewMapDensityUP1D(UnaryPredicate1D):
|
|
def __init__(self,threshold, orientation, level,integration = IntegrationType.MEAN):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._threshold = threshold
|
|
self._orientation = orientation
|
|
self._level = level
|
|
self._integration = integration
|
|
def __call__(self, inter):
|
|
func = GetDirectionalViewMapDensityF1D(self._orientation, self._level, self._integration)
|
|
v = func(inter)
|
|
#print(v)
|
|
if v < self._threshold:
|
|
return 1
|
|
return 0
|
|
|
|
class pyHighSteerableViewMapDensityUP1D(UnaryPredicate1D):
|
|
def __init__(self,threshold, level,integration = IntegrationType.MEAN):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._threshold = threshold
|
|
self._level = level
|
|
self._integration = integration
|
|
self._func = GetSteerableViewMapDensityF1D(self._level, self._integration)
|
|
def __call__(self, inter):
|
|
v = self._func(inter)
|
|
if v > self._threshold:
|
|
return 1
|
|
return 0
|
|
|
|
class pyHighDirectionalViewMapDensityUP1D(UnaryPredicate1D):
|
|
def __init__(self,threshold, orientation, level,integration = IntegrationType.MEAN, sampling=2.0):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._threshold = threshold
|
|
self._orientation = orientation
|
|
self._level = level
|
|
self._integration = integration
|
|
self._sampling = sampling
|
|
def __call__(self, inter):
|
|
func = GetDirectionalViewMapDensityF1D(self._orientation, self._level, self._integration, self._sampling)
|
|
v = func(inter)
|
|
if v > self._threshold:
|
|
return 1
|
|
return 0
|
|
|
|
class pyHighViewMapDensityUP1D(UnaryPredicate1D):
|
|
def __init__(self,threshold, level,integration = IntegrationType.MEAN, sampling=2.0):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._threshold = threshold
|
|
self._level = level
|
|
self._integration = integration
|
|
self._sampling = sampling
|
|
self._func = GetCompleteViewMapDensityF1D(self._level, self._integration, self._sampling) # 2.0 is the smpling
|
|
def __call__(self, inter):
|
|
#print("toto")
|
|
#print(func.name)
|
|
#print(inter.name)
|
|
v= self._func(inter)
|
|
if v > self._threshold:
|
|
return 1
|
|
return 0
|
|
|
|
class pyDensityFunctorUP1D(UnaryPredicate1D):
|
|
def __init__(self,wsize,threshold, functor, funcmin=0.0, funcmax=1.0, integration = IntegrationType.MEAN):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._wsize = wsize
|
|
self._threshold = float(threshold)
|
|
self._functor = functor
|
|
self._funcmin = float(funcmin)
|
|
self._funcmax = float(funcmax)
|
|
self._integration = integration
|
|
def __call__(self, inter):
|
|
func = DensityF1D(self._wsize, self._integration)
|
|
res = self._functor(inter)
|
|
k = (res-self._funcmin)/(self._funcmax-self._funcmin)
|
|
if func(inter) < self._threshold*k:
|
|
return 1
|
|
return 0
|
|
|
|
class pyZSmallerUP1D(UnaryPredicate1D):
|
|
def __init__(self,z, integration=IntegrationType.MEAN):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._z = z
|
|
self._integration = integration
|
|
def __call__(self, inter):
|
|
func = GetProjectedZF1D(self._integration)
|
|
if func(inter) < self._z:
|
|
return 1
|
|
return 0
|
|
|
|
class pyIsOccludedByUP1D(UnaryPredicate1D):
|
|
def __init__(self,id):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._id = id
|
|
def __call__(self, inter):
|
|
func = GetShapeF1D()
|
|
shapes = func(inter)
|
|
for s in shapes:
|
|
if(s.id == self._id):
|
|
return 0
|
|
it = inter.vertices_begin()
|
|
itlast = inter.vertices_end()
|
|
itlast.decrement()
|
|
v = it.object
|
|
vlast = itlast.object
|
|
tvertex = v.viewvertex
|
|
if type(tvertex) is TVertex:
|
|
print("TVertex: [ ", tvertex.id.first, ",", tvertex.id.second," ]")
|
|
eit = tvertex.edges_begin()
|
|
while not eit.is_end:
|
|
ve, incoming = eit.object
|
|
if ve.id == self._id:
|
|
return 1
|
|
print("-------", ve.id.first, "-", ve.id.second)
|
|
eit.increment()
|
|
tvertex = vlast.viewvertex
|
|
if type(tvertex) is TVertex:
|
|
print("TVertex: [ ", tvertex.id.first, ",", tvertex.id.second," ]")
|
|
eit = tvertex.edges_begin()
|
|
while not eit.is_end:
|
|
ve, incoming = eit.object
|
|
if ve.id == self._id:
|
|
return 1
|
|
print("-------", ve.id.first, "-", ve.id.second)
|
|
eit.increment()
|
|
return 0
|
|
|
|
class pyIsInOccludersListUP1D(UnaryPredicate1D):
|
|
def __init__(self,id):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._id = id
|
|
def __call__(self, inter):
|
|
func = GetOccludersF1D()
|
|
occluders = func(inter)
|
|
for a in occluders:
|
|
if a.id == self._id:
|
|
return 1
|
|
return 0
|
|
|
|
class pyIsOccludedByItselfUP1D(UnaryPredicate1D):
|
|
def __init__(self):
|
|
UnaryPredicate1D.__init__(self)
|
|
self.__func1 = GetOccludersF1D()
|
|
self.__func2 = GetShapeF1D()
|
|
def __call__(self, inter):
|
|
lst1 = self.__func1(inter)
|
|
lst2 = self.__func2(inter)
|
|
for vs1 in lst1:
|
|
for vs2 in lst2:
|
|
if vs1.id == vs2.id:
|
|
return 1
|
|
return 0
|
|
|
|
class pyIsOccludedByIdListUP1D(UnaryPredicate1D):
|
|
def __init__(self, idlist):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._idlist = idlist
|
|
self.__func1 = GetOccludersF1D()
|
|
def __call__(self, inter):
|
|
lst1 = self.__func1(inter)
|
|
for vs1 in lst1:
|
|
for _id in self._idlist:
|
|
if vs1.id == _id:
|
|
return 1
|
|
return 0
|
|
|
|
class pyShapeIdListUP1D(UnaryPredicate1D):
|
|
def __init__(self,idlist):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._idlist = idlist
|
|
self._funcs = []
|
|
for _id in idlist :
|
|
self._funcs.append(ShapeUP1D(_id.first, _id.second))
|
|
def __call__(self, inter):
|
|
for func in self._funcs :
|
|
if func(inter) == 1:
|
|
return 1
|
|
return 0
|
|
|
|
## deprecated
|
|
class pyShapeIdUP1D(UnaryPredicate1D):
|
|
def __init__(self, _id):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._id = _id
|
|
def __call__(self, inter):
|
|
func = GetShapeF1D()
|
|
shapes = func(inter)
|
|
for a in shapes:
|
|
if a.id == self._id:
|
|
return 1
|
|
return 0
|
|
|
|
class pyHighDensityAnisotropyUP1D(UnaryPredicate1D):
|
|
def __init__(self,threshold, level, sampling=2.0):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._l = threshold
|
|
self.func = pyDensityAnisotropyF1D(level, IntegrationType.MEAN, sampling)
|
|
def __call__(self, inter):
|
|
return (self.func(inter) > self._l)
|
|
|
|
class pyHighViewMapGradientNormUP1D(UnaryPredicate1D):
|
|
def __init__(self,threshold, l, sampling=2.0):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._threshold = threshold
|
|
self._GetGradient = pyViewMapGradientNormF1D(l, IntegrationType.MEAN)
|
|
def __call__(self, inter):
|
|
gn = self._GetGradient(inter)
|
|
#print(gn)
|
|
return (gn > self._threshold)
|
|
|
|
class pyDensityVariableSigmaUP1D(UnaryPredicate1D):
|
|
def __init__(self,functor, sigmaMin,sigmaMax, lmin, lmax, tmin, tmax, integration = IntegrationType.MEAN, sampling=2.0):
|
|
UnaryPredicate1D.__init__(self)
|
|
self._functor = functor
|
|
self._sigmaMin = float(sigmaMin)
|
|
self._sigmaMax = float(sigmaMax)
|
|
self._lmin = float(lmin)
|
|
self._lmax = float(lmax)
|
|
self._tmin = tmin
|
|
self._tmax = tmax
|
|
self._integration = integration
|
|
self._sampling = sampling
|
|
def __call__(self, inter):
|
|
sigma = (self._sigmaMax-self._sigmaMin)/(self._lmax-self._lmin)*(self._functor(inter)-self._lmin) + self._sigmaMin
|
|
t = (self._tmax-self._tmin)/(self._lmax-self._lmin)*(self._functor(inter)-self._lmin) + self._tmin
|
|
if sigma < self._sigmaMin:
|
|
sigma = self._sigmaMin
|
|
self._func = DensityF1D(sigma, self._integration, self._sampling)
|
|
d = self._func(inter)
|
|
if d < t:
|
|
return 1
|
|
return 0
|
|
|
|
class pyClosedCurveUP1D(UnaryPredicate1D):
|
|
def __call__(self, inter):
|
|
it = inter.vertices_begin()
|
|
itlast = inter.vertices_end()
|
|
itlast.decrement()
|
|
vlast = itlast.object
|
|
v = it.object
|
|
print(v.id.first, v.id.second)
|
|
print(vlast.id.first, vlast.id.second)
|
|
if v.id == vlast.id:
|
|
return 1
|
|
return 0
|