blender/release/scripts/archimap.py
Campbell Barton d498ae5104 Fixed a bug in boxpack that archimap not to clear data between uses, and become progressivly slower.
Updated Archimap to set UV's aslists (dont need to convert to tuples anymore)
2006-01-12 03:34:37 +00:00

1138 lines
34 KiB
Python

#!BPY
""" Registration info for Blender menus: <- these words are ignored
Name: 'ArchiMap UV Projection Unwrapper'
Blender: 240
Group: 'UV'
Tooltip: 'ArchiMap UV Unwrap mesh faces for all select mesh objects'
"""
__author__ = "Campbell Barton"
__url__ = ("blender", "elysiun")
__version__ = "1.1 12/18/05"
__bpydoc__ = """\
This script projection unwraps the selected faces of a mesh.
it operates on all selected mesh objects, and can be set to unwrap
selected faces, or all faces.
"""
# --------------------------------------------------------------------------
# Archimap UV Projection Unwrapper v1.1 by Campbell Barton (AKA Ideasman)
# --------------------------------------------------------------------------
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ***** END GPL LICENCE BLOCK *****
# --------------------------------------------------------------------------
from Blender import Object, Scene, Draw, Window, sys, Mesh
from Blender.Mathutils import CrossVecs, Matrix, Vector, RotationMatrix, DotVecs, TriangleArea
from math import cos
DEG_TO_RAD = 0.017453292519943295 # pi/180.0
SMALL_NUM = 0.000000001
BIG_NUM = 1e15
global USER_FILL_HOLES
global USER_FILL_HOLES_QUALITY
USER_FILL_HOLES = None
USER_FILL_HOLES_QUALITY = None
import boxpack2d
# reload(boxpack2d) # for developing.
# Do 2 lines intersect?
def lineIntersection2D(x1,y1, x2,y2, _x1,_y1, _x2,_y2):
# Bounding box intersection first.
if min(x1, x2) > max(_x1, _x2) or \
max(x1, x2) < min(_x1, _x2) or \
min(y1, y2) > max(_y1, _y2) or \
max(y1, y2) < min(_y1, _y2):
return None, None # BAsic Bounds intersection TEST returns false.
# are either of the segments points? Check Seg1
if abs(x1 - x2) + abs(y1 - y2) <= SMALL_NUM:
return None, None
# are either of the segments points? Check Seg2
if abs(_x1 - _x2) + abs(_y1 - _y2) <= SMALL_NUM:
return None, None
# Make sure the HOZ/Vert Line Comes first.
if abs(_x1 - _x2) < SMALL_NUM or abs(_y1 - _y2) < SMALL_NUM:
x1, x2, y1, y2, _x1, _x2, _y1, _y2 = _x1, _x2, _y1, _y2, x1, x2, y1, y2
if abs(x2-x1) < SMALL_NUM: # VERTICLE LINE
if abs(_x2-_x1) < SMALL_NUM: # VERTICLE LINE SEG2
return None, None # 2 verticle lines dont intersect.
elif abs(_y2-_y1) < SMALL_NUM:
return x1, _y1 # X of vert, Y of hoz. no calculation.
yi = ((_y1 / abs(_x1 - _x2)) * abs(_x2 - x1)) + ((_y2 / abs(_x1 - _x2)) * abs(_x1 - x1))
if yi > max(y1, y2): # New point above seg1's vert line
return None, None
elif yi < min(y1, y2): # New point below seg1's vert line
return None, None
return x1, yi # Intersecting.
if abs(y2-y1) < SMALL_NUM: # HOZ LINE
if abs(_y2-_y1) < SMALL_NUM: # HOZ LINE SEG2
return None, None # 2 hoz lines dont intersect.
# Can skip vert line check for seg 2 since its covered above.
xi = ((_x1 / abs(_y1 - _y2)) * abs(_y2 - y1)) + ((_x2 / abs(_y1 - _y2)) * abs(_y1 - y1))
if xi > max(x1, x2): # New point right of seg1's hoz line
return None, None
elif xi < min(x1, x2): # New point left of seg1's hoz line
return None, None
return xi, y1 # Intersecting.
# ACCOUNTED FOR HOZ/VERT LINES. GO ON WITH BOTH ANGLULAR.
b1 = (y2-y1)/(x2-x1)
b2 = (_y2-_y1)/(_x2-_x1)
a1 = y1-b1*x1
a2 = _y1-b2*_x1
if b1 - b2 == 0.0:
return None, None
xi = - (a1-a2)/(b1-b2)
yi = a1+b1*xi
if (x1-xi)*(xi-x2) >= 0 and (_x1-xi)*(xi-_x2) >= 0 and (y1-yi)*(yi-y2) >= 0 and (_y1-yi)*(yi-_y2)>=0:
return xi, yi
else:
return None, None
dict_matrix = {}
def pointInTri2D(v, v1, v2, v3):
global dict_matrix
key = (v1.x, v1.y, v2.x, v2.y, v3.x, v3.y)
try:
mtx = dict_matrix[key]
if not mtx:
return False
except:
side1 = v2 - v1
side2 = v3 - v1
nor = CrossVecs(side1, side2)
l1 = [side1[0], side1[1], side1[2]]
l2 = [side2[0], side2[1], side2[2]]
l3 = [nor[0], nor[1], nor[2]]
mtx = Matrix(l1, l2, l3)
# Zero area 2d tri, even tho we throw away zerop area faces
# the projection UV can result in a zero area UV.
if not mtx.determinant():
dict_matrix[key] = None
return False
mtx.invert()
dict_matrix[key] = mtx
uvw = (v - v1) * mtx
return 0 <= uvw[0] and 0 <= uvw[1] and uvw[0] + uvw[1] <= 1
def faceArea(f):
if len(f.v) == 3:
return TriangleArea(f.v[0].co, f.v[1].co, f.v[2].co)
elif len(f.v) == 4:
return\
TriangleArea(f.v[0].co, f.v[1].co, f.v[2].co) +\
TriangleArea(f.v[0].co, f.v[2].co, f.v[3].co)
def boundsIsland(faces):
minx = maxx = faces[0].uv[0][0] # Set initial bounds.
miny = maxy = faces[0].uv[0][1]
# print len(faces), minx, maxx, miny , maxy
for f in faces:
for uv in f.uv:
minx = min(minx, uv[0])
maxx = max(maxx, uv[0])
miny = min(miny, uv[1])
maxy = max(maxy, uv[1])
return minx, miny, maxx, maxy
def boundsEdgeLoop(edges):
minx = maxx = edges[0][0] # Set initial bounds.
miny = maxy = edges[0][1]
# print len(faces), minx, maxx, miny , maxy
for ed in edges:
for pt in ed:
minx = min(minx, pt[0])
maxx = max(maxx, pt[0])
miny = min(miny, pt[1])
maxy = max(maxy, pt[1])
return minx, miny, maxx, maxy
# Turns the islands into a list of unpordered edges (Non internal)
# Onlt for UV's
def island2Edge(island):
# Vert index edges
edges = {}
for f in island:
for vIdx in range(len(f.v)):
if f.v[vIdx].index > f.v[vIdx-1].index:
edges[((f.uv[vIdx-1][0], f.uv[vIdx-1][1]), (f.uv[vIdx][0], f.uv[vIdx][1]))] =\
(Vector([f.uv[vIdx-1][0], f.uv[vIdx-1][1]]) - Vector([f.uv[vIdx][0], f.uv[vIdx][1]])).length
else:
edges[((f.uv[vIdx][0], f.uv[vIdx][1]), (f.uv[vIdx-1][0], f.uv[vIdx-1][1]) )] =\
(Vector([f.uv[vIdx-1][0], f.uv[vIdx-1][1]]) - Vector([f.uv[vIdx][0], f.uv[vIdx][1]])).length
# If 2 are the same then they will be together, but full [a,b] order is not correct.
# Sort by length
length_sorted_edges = []
for key in edges.keys():
length_sorted_edges.append([key[0], key[1], edges[key]])
length_sorted_edges.sort(lambda A, B: cmp(B[2], A[2]))
#for e in length_sorted_edges:
# e.pop(2)
return length_sorted_edges
# ========================= NOT WORKING????
# Find if a points inside an edge loop, un-orderd.
# pt is and x/y
# edges are a non ordered loop of edges.
# #offsets are the edge x and y offset.
"""
def pointInEdges(pt, edges):
#
x1 = pt[0]
y1 = pt[1]
# Point to the left of this line.
x2 = -100000
y2 = -10000
intersectCount = 0
for ed in edges:
xi, yi = lineIntersection2D(x1,y1, x2,y2, ed[0][0], ed[0][1], ed[1][0], ed[1][1])
if xi != None: # Is there an intersection.
intersectCount+=1
return intersectCount % 2
"""
def uniqueEdgePairPoints(edges):
points = {}
pointsVec = []
for e in edges:
points[e[0]] = points[e[1]] = None
for p in points.keys():
pointsVec.append( Vector([p[0], p[1], 0]) )
return pointsVec
def pointInIsland(pt, island):
vec1 = Vector(); vec2 = Vector(); vec3 = Vector()
for f in island:
vec1.x, vec1.y = f.uv[0]
vec2.x, vec2.y = f.uv[1]
vec3.x, vec3.y = f.uv[2]
if pointInTri2D(pt, vec1, vec2, vec3):
return True
if len(f.v) == 4:
vec1.x, vec1.y = f.uv[0]
vec2.x, vec2.y = f.uv[2]
vec3.x, vec3.y = f.uv[3]
if pointInTri2D(pt, vec1, vec2, vec3):
return True
return False
# box is (left,bottom, right, top)
def islandIntersectUvIsland(source, target, xSourceOffset, ySourceOffset):
# Is 1 point in the box, inside the vertLoops
edgeLoopsSource = source[6] # Pretend this is offset
edgeLoopsTarget = target[6]
# Edge intersect test
for ed in edgeLoopsSource:
for seg in edgeLoopsTarget:
xi, yi = lineIntersection2D(\
seg[0][0], seg[0][1], seg[1][0], seg[1][1],\
xSourceOffset+ed[0][0], ySourceOffset+ed[0][1], xSourceOffset+ed[1][0], ySourceOffset+ed[1][1])
if xi != None:
return 1 # LINE INTERSECTION
# 1 test for source being totally inside target
for pv in source[7]:
p = Vector(pv)
p.x += xSourceOffset
p.y += ySourceOffset
if pointInIsland(p, target[0]):
return 2 # SOURCE INSIDE TARGET
# 2 test for a part of the target being totaly inside the source.
for pv in target[7]:
p = Vector(pv)
p.x -= xSourceOffset
p.y -= ySourceOffset
if pointInIsland(p, source[0]):
return 3 # PART OF TARGET INSIDE SOURCE.
return 0 # NO INTERSECTION
# Returns the X/y Bounds of a list of vectors.
def testNewVecLs2DRotIsBetter(vecs, mat=-1, bestAreaSoFar = -1):
# UV's will never extend this far.
minx = miny = BIG_NUM
maxx = maxy = -BIG_NUM
for i, v in enumerate(vecs):
# Do this allong the way
if mat != -1:
v = vecs[i] = v*mat
minx = min(minx, v.x)
maxx = max(maxx, v.x)
miny = min(miny, v.y)
maxy = max(maxy, v.y)
# Spesific to this algo, bail out if we get bigger then the current area
if bestAreaSoFar != -1 and (maxx-minx) * (maxy-miny) > bestAreaSoFar:
return (BIG_NUM, None), None
w = maxx-minx
h = maxy-miny
return (w*h, w,h), vecs # Area, vecs
# Takes a list of faces that make up a UV island and rotate
# until they optimally fit inside a square.
ROTMAT_2D_POS_90D = RotationMatrix( 90, 2)
ROTMAT_2D_POS_45D = RotationMatrix( 45, 2)
RotMatStepRotation = []
rot_angle = 22.5 #45.0/2
while rot_angle > 0.1:
RotMatStepRotation.append([\
RotationMatrix( rot_angle, 2),\
RotationMatrix( -rot_angle, 2)])
rot_angle = rot_angle/2.0
def optiRotateUvIsland(faces):
global currentArea
# Bestfit Rotation
def best2dRotation(uvVecs, MAT1, MAT2):
global currentArea
newAreaPos, newfaceProjectionGroupListPos =\
testNewVecLs2DRotIsBetter(uvVecs[:], MAT1, currentArea[0])
# Why do I use newpos here? May as well give the best area to date for an early bailout
# some slight speed increase in this.
# If the new rotation is smaller then the existing, we can
# avoid copying a list and overwrite the old, crappy one.
if newAreaPos[0] < currentArea[0]:
newAreaNeg, newfaceProjectionGroupListNeg =\
testNewVecLs2DRotIsBetter(uvVecs, MAT2, newAreaPos[0]) # Reuse the old bigger list.
else:
newAreaNeg, newfaceProjectionGroupListNeg =\
testNewVecLs2DRotIsBetter(uvVecs[:], MAT2, currentArea[0]) # Cant reuse, make a copy.
# Now from the 3 options we need to discover which to use
# we have cerrentArea/newAreaPos/newAreaNeg
bestArea = min(currentArea[0], newAreaPos[0], newAreaNeg[0])
if currentArea[0] == bestArea:
return uvVecs
elif newAreaPos[0] == bestArea:
uvVecs = newfaceProjectionGroupListPos
currentArea = newAreaPos
elif newAreaNeg[0] == bestArea:
uvVecs = newfaceProjectionGroupListNeg
currentArea = newAreaNeg
return uvVecs
# Serialized UV coords to Vectors
uvVecs = [Vector(uv) for f in faces for uv in f.uv]
# Theres a small enough number of these to hard code it
# rather then a loop.
# Will not modify anything
currentArea, dummy =\
testNewVecLs2DRotIsBetter(uvVecs)
# Try a 45d rotation
newAreaPos, newfaceProjectionGroupListPos = testNewVecLs2DRotIsBetter(uvVecs[:], ROTMAT_2D_POS_45D, currentArea[0])
if newAreaPos[0] < currentArea[0]:
uvVecs = newfaceProjectionGroupListPos
currentArea = newAreaPos
# 45d done
# Testcase different rotations and find the onfe that best fits in a square
for ROTMAT in RotMatStepRotation:
uvVecs = best2dRotation(uvVecs, ROTMAT[0], ROTMAT[1])
# Only if you want it, make faces verticle!
if currentArea[1] > currentArea[2]:
# Rotate 90d
# Work directly on the list, no need to return a value.
testNewVecLs2DRotIsBetter(uvVecs, ROTMAT_2D_POS_90D)
# Now write the vectors back to the face UV's
i = 0 # count the serialized uv/vectors
for f in faces:
f.uv = [uv for uv in uvVecs[i:len(f.v)+i] ]
i += len(f.v)
# Takes an island list and tries to find concave, hollow areas to pack smaller islands into.
def mergeUvIslands(islandList, islandListArea):
global USER_FILL_HOLES
global USER_FILL_HOLES_QUALITY
# Pack islands to bottom LHS
# Sync with island
#islandTotFaceArea = [] # A list of floats, each island area
#islandArea = [] # a list of tuples ( area, w,h)
decoratedIslandList = []
islandIdx = len(islandList)
while islandIdx:
islandIdx-=1
minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx])
w, h = maxx-minx, maxy-miny
totFaceArea = 0
fIdx = len(islandList[islandIdx])
while fIdx:
fIdx-=1
f = islandList[islandIdx][fIdx]
f.uv = [Vector(uv[0]-minx, uv[1]-miny) for uv in f.uv]
totFaceArea += islandListArea[islandIdx][fIdx] # Use Cached area. dont recalculate.
islandBoundsArea = w*h
efficiency = abs(islandBoundsArea - totFaceArea)
# UV Edge list used for intersections
edges = island2Edge(islandList[islandIdx])
uniqueEdgePoints = uniqueEdgePairPoints(edges)
decoratedIslandList.append([islandList[islandIdx], totFaceArea, efficiency, islandBoundsArea, w,h, edges, uniqueEdgePoints])
# Sort by island bounding box area, smallest face area first.
# no.. chance that to most simple edge loop first.
decoratedIslandListAreaSort =decoratedIslandList[:]
decoratedIslandListAreaSort.sort(lambda A, B: cmp(A[1], B[1]))
# sort by efficiency, Most Efficient first.
decoratedIslandListEfficSort = decoratedIslandList[:]
decoratedIslandListEfficSort.sort(lambda A, B: cmp(B[2], A[2]))
# ================================================== THESE CAN BE TWEAKED.
# This is a quality value for the number of tests.
# from 1 to 4, generic quality value is from 1 to 100
USER_STEP_QUALITY = ((USER_FILL_HOLES_QUALITY - 1) / 25.0) + 1
# If 100 will test as long as there is enough free space.
# this is rarely enough, and testing takes a while, so lower quality speeds this up.
# 1 means they have the same quaklity
USER_FREE_SPACE_TO_TEST_QUALITY = 1 + (((100 - USER_FILL_HOLES_QUALITY)/100.0) *5)
#print 'USER_STEP_QUALITY', USER_STEP_QUALITY
#print 'USER_FREE_SPACE_TO_TEST_QUALITY', USER_FREE_SPACE_TO_TEST_QUALITY
removedCount = 0
areaIslandIdx = 0
ctrl = Window.Qual.CTRL
while areaIslandIdx < len(decoratedIslandListAreaSort) and (not Window.GetKeyQualifiers() & ctrl):
sourceIsland = decoratedIslandListAreaSort[areaIslandIdx]
# Alredy packed?
if not sourceIsland[0]:
areaIslandIdx+=1
else:
efficIslandIdx = 0
while efficIslandIdx < len(decoratedIslandListEfficSort):
# Now we have 2 islands, is the efficience of the islands lowers theres an
# increasing likely hood that we can fit merge into the bigger UV island.
# this ensures a tight fit.
# Just use figures we have about user/unused area to see if they might fit.
targetIsland = decoratedIslandListEfficSort[efficIslandIdx]
if sourceIsland[0] == targetIsland[0] or\
targetIsland[0] == [] or\
sourceIsland[0] == []:
efficIslandIdx+=1
continue
# ([island, totFaceArea, efficiency, islandArea, w,h])
# Waisted space on target is greater then UV bounding island area.
# if targetIsland[3] > (sourceIsland[2]) and\ #
if targetIsland[3] > (sourceIsland[1] * USER_FREE_SPACE_TO_TEST_QUALITY) and\
targetIsland[4] > sourceIsland[4] and\
targetIsland[5] > sourceIsland[5]:
# DEBUG # print '%.10f %.10f' % (targetIsland[3], sourceIsland[1])
# These enough spare space lets move the box until it fits
# How many times does the source fit into the target x/y
blockTestXUnit = targetIsland[4]/sourceIsland[4]
blockTestYUnit = targetIsland[5]/sourceIsland[5]
boxLeft = 0
# Distance we can move between whilst staying inside the targets bounds.
testWidth = targetIsland[4] - sourceIsland[4]
testHeight = targetIsland[5] - sourceIsland[5]
# Increment we move each test. x/y
xIncrement = (testWidth / (blockTestXUnit * USER_STEP_QUALITY))
yIncrement = (testHeight / (blockTestYUnit * USER_STEP_QUALITY))
boxLeft = 0 # Start 1 back so we can jump into the loop.
boxBottom= 0 #-yIncrement
while boxLeft <= testWidth or boxBottom <= testHeight:
Intersect = islandIntersectUvIsland(sourceIsland, targetIsland, boxLeft, boxBottom)
if Intersect == 1: # Line intersect, dont bother with this any more
pass
if Intersect == 2: # Source inside target
'''
We have an intersection, if we are inside the target
then move us 1 whole width accross,
Its possible this is a bad idea since 2 skinny Angular faces
could join without 1 whole move, but its a lot more optimal to speed this up
since we have alredy tested for it.
It gives about 10% speedup with minimal errors.
'''
# Move the test allong its width + SMALL_NUM
boxLeft += sourceIsland[4] + SMALL_NUM
elif Intersect == 0: # No intersection?? Place it.
# Progress
removedCount +=1
Window.DrawProgressBar(0.0, 'Merged: %i islands, Ctrl to finish early.' % removedCount)
# Move faces into new island and offset
targetIsland[0].extend(sourceIsland[0])
while sourceIsland[0]:
f = sourceIsland[0].pop()
f.uv = [Vector(uv[0]+boxLeft, uv[1]+boxBottom) for uv in f.uv]
# Move edge loop into new and offset.
# targetIsland[6].extend(sourceIsland[6])
while sourceIsland[6]:
e = sourceIsland[6].pop()
targetIsland[6].append(\
((e[0][0]+boxLeft, e[0][1]+boxBottom),\
(e[1][0]+boxLeft, e[1][1]+boxBottom), e[2])\
)
# Sort by edge length, reverse so biggest are first.
targetIsland[6].sort(lambda B,A: cmp(A[2], B[2] ))
targetIsland[7].extend(sourceIsland[7])
while sourceIsland[7]:
p = sourceIsland[7].pop()
p.x += boxLeft; p.y += boxBottom
# Decrement the efficiency
targetIsland[1]+=sourceIsland[1] # Increment totFaceArea
targetIsland[2]-=sourceIsland[1] # Decrement efficiency
# IF we ever used these again, should set to 0, eg
sourceIsland[2] = 0 # No area is anyone wants to know
break
# INCREMENR NEXT LOCATION
if boxLeft > testWidth:
boxBottom += yIncrement
boxLeft = 0.0
else:
boxLeft += xIncrement
efficIslandIdx+=1
areaIslandIdx+=1
# Remove empty islands
i = len(islandList)
while i:
i-=1
if not islandList[i]:
islandList.pop(i) # Can increment islands removed here.
# Takes groups of faces. assumes face groups are UV groups.
def packLinkedUvs(faceGroups, faceGroupsArea, me):
islandList = []
islandListArea = []
Window.DrawProgressBar(0.0, 'Splitting %d projection groups into UV islands:' % len(faceGroups))
#print '\tSplitting %d projection groups into UV islands:' % len(faceGroups),
# Find grouped faces
faceGroupIdx = len(faceGroups)
while faceGroupIdx:
faceGroupIdx-=1
faces = faceGroups[faceGroupIdx]
facesArea = faceGroupsArea[faceGroupIdx]
# print '.',
faceUsers = [[] for i in xrange(len(me.verts)) ]
faceUsersArea = [[] for i in xrange(len(me.verts)) ]
# Do the first face
fIdx = len(faces)
while fIdx:
fIdx-=1
for v in faces[fIdx].v:
faceUsers[v.index].append(faces[fIdx])
faceUsersArea[v.index].append(facesArea[fIdx])
while 1:
# This is an index that is used to remember
# what was the last face that was removed, so we know which faces are new and need to have
# faces next to them added into the list
searchFaceIndex = 0
# Find a face that hasnt been used alredy to start the search with
newIsland = []
newIslandArea = []
while not newIsland:
hasBeenUsed = 1 # Assume its been used.
if searchFaceIndex >= len(faces):
break
for v in faces[searchFaceIndex].v:
if faces[searchFaceIndex] in faceUsers[v.index]:
# This has not yet been used, it still being used by a vert
hasBeenUsed = 0
break
if hasBeenUsed == 0:
newIsland.append(faces.pop(searchFaceIndex))
newIslandArea.append(facesArea.pop(searchFaceIndex))
searchFaceIndex+=1
if newIsland == []:
break
# Before we start remove the first, search face from being used.
for v in newIsland[0].v:
popoffset = 0
for fIdx in xrange(len(faceUsers[v.index])):
if faceUsers[v.index][fIdx - popoffset] is newIsland[0]:
faceUsers[v.index].pop(fIdx - popoffset)
faceUsersArea[v.index].pop(fIdx - popoffset)
popoffset += 1
searchFaceIndex = 0
while searchFaceIndex != len(newIsland):
for v in newIsland[searchFaceIndex].v:
# Loop through all faces that use this vert
while faceUsers[v.index]:
sharedFace = faceUsers[v.index][-1]
sharedFaceArea = faceUsersArea[v.index][-1]
newIsland.append(sharedFace)
newIslandArea.append(sharedFaceArea)
# Before we start remove the first, search face from being used.
for vv in sharedFace.v:
#faceUsers = [f for f in faceUsers[vv.index] if f != sharedFace]
fIdx = 0
for fIdx in xrange(len(faceUsers[vv.index])):
if faceUsers[vv.index][fIdx] is sharedFace:
faceUsers[vv.index].pop(fIdx)
faceUsersArea[vv.index].pop(fIdx)
break # Can only be used once.
searchFaceIndex += 1
# If all the faces are done and no face has been added then we can quit
if newIsland:
islandList.append(newIsland)
islandListArea.append(newIslandArea)
else:
print '\t(empty island found, ignoring)'
Window.DrawProgressBar(0.1, 'Optimizing Rotation for %i UV Islands' % len(islandList))
for island in islandList:
optiRotateUvIsland(island)
if USER_FILL_HOLES:
Window.DrawProgressBar(0.1, 'Merging Islands (Ctrl: skip merge)...')
mergeUvIslands(islandList, islandListArea) # Modify in place
# Now we have UV islands, we need to pack them.
# Make a synchronised list with the islands
# so we can box pak the islands.
boxes2Pack = []
# Keep a list of X/Y offset so we can save time by writing the
# uv's and packed data in one pass.
islandOffsetList = []
islandIdx = 0
while islandIdx < len(islandList):
minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx])
w, h = maxx-minx, maxy-miny
if w < 0.00001 or h < 0.00001:
del islandList[islandIdx]
islandIdx -=1
continue
'''Save the offset to be applied later,
we could apply to the UVs now and allign them to the bottom left hand area
of the UV coords like the box packer imagines they are
but, its quicker just to remember their offset and
apply the packing and offset in 1 pass '''
islandOffsetList.append((minx, miny))
# Add to boxList. use the island idx for the BOX id.
boxes2Pack.append([islandIdx, w,h])
islandIdx+=1
# Now we have a list of boxes to pack that syncs
# with the islands.
#print '\tPacking UV Islands...'
Window.DrawProgressBar(0.7, 'Packing %i UV Islands...' % len(boxes2Pack) )
time1 = sys.time()
packWidth, packHeight, packedLs = boxpack2d.boxPackIter(boxes2Pack)
# print 'Box Packing Time:', sys.time() - time1
#if len(pa ckedLs) != len(islandList):
# raise "Error packed boxes differes from original length"
#print '\tWriting Packed Data to faces'
Window.DrawProgressBar(0.8, 'Writing Packed Data to faces')
packedLs.sort(lambda A, B: cmp(A[0] , B[0])) # Sort by ID, so there in sync again
islandIdx = len(islandList)
# Having these here avoids devide by 0
if islandIdx:
if USER_STRETCH_ASPECT:
# Maximize to uv area?? Will write a normalize function.
xfactor = 1.0 / packWidth
yfactor = 1.0 / packHeight
else:
# Keep proportions.
xfactor = yfactor = 1.0 / max(packWidth, packHeight)
while islandIdx:
islandIdx -=1
# Write the packed values to the UV's
xoffset = packedLs[islandIdx][1] - islandOffsetList[islandIdx][0]
yoffset = packedLs[islandIdx][2] - islandOffsetList[islandIdx][1]
if USER_MARGIN:
USER_MARGIN_SCALE = 1-(USER_MARGIN*2)
for f in islandList[islandIdx]: # Offsetting the UV's so they fit in there packed box, margin
f.uv = [Vector((((uv[0]+xoffset)*xfactor)*USER_MARGIN_SCALE)+USER_MARGIN, (((uv[1]+yoffset)*yfactor)*USER_MARGIN_SCALE)+USER_MARGIN) for uv in f.uv]
else:
for f in islandList[islandIdx]: # Offsetting the UV's so they fit in there packed box
f.uv = [Vector(((uv[0]+xoffset)*xfactor), ((uv[1]+yoffset)*yfactor)) for uv in f.uv]
def VectoMat(vec):
a3 = Vector(vec)
a3.normalize()
up = Vector([0,0,1])
if abs(DotVecs(a3, up)) == 1.0:
up = Vector([0,1,0])
a1 = CrossVecs(a3, up)
a1.normalize()
a2 = CrossVecs(a3, a1)
return Matrix([a1[0], a1[1], a1[2]], [a2[0], a2[1], a2[2]], [a3[0], a3[1], a3[2]])
global ob
ob = None
def main():
global USER_FILL_HOLES
global USER_FILL_HOLES_QUALITY
global USER_STRETCH_ASPECT
global USER_MARGIN
# Use datanames as kesy so as not to unwrap a mesh more then once.
obList = dict([(ob.getData(name_only=1), ob) for ob in Object.GetSelected() if ob.getType() == 'Mesh'])
# Face select object may not be selected.
scn = Scene.GetCurrent()
ob = scn.getActiveObject()
if ob and ob.sel == 0 and ob.getType() == 'Mesh':
# Add to the list
obList[ob.getData(name_only=1)] = ob
del scn # Sone use the scene again.
obList = obList.values() # turn from a dict to a list.
if not obList:
Draw.PupMenu('error, no selected mesh objects')
return
# Create the variables.
USER_PROJECTION_LIMIT = Draw.Create(66)
USER_ONLY_SELECTED_FACES = Draw.Create(1)
USER_STRETCH_ASPECT = Draw.Create(1) # Only for hole filling.
USER_MARGIN = Draw.Create(0.0) # Only for hole filling.
USER_FILL_HOLES = Draw.Create(0)
USER_FILL_HOLES_QUALITY = Draw.Create(50) # Only for hole filling.
pup_block = [\
'Projection',\
('Angle Limit:', USER_PROJECTION_LIMIT, 1, 89, 'lower for more projection groups, higher for less distortion.'),\
('Selected Faces Only', USER_ONLY_SELECTED_FACES, 'Use only selected faces from all selected meshes.'),\
'UV Layout',\
('Stretch to bounds', USER_STRETCH_ASPECT, 'Stretch the final output to texture bounds.'),\
('Bleed Margin:', USER_MARGIN, 0.0, 0.25, 'Margin to reduce bleed from texture tiling.'),\
'Fill in empty areas',\
('Fill Holes', USER_FILL_HOLES, 'Fill in empty areas reduced texture waistage (slow).'),\
('Fill Quality:', USER_FILL_HOLES_QUALITY, 1, 100, 'Depends on fill holes, how tightly to fill UV holes, (higher is slower)'),\
]
# Reuse variable
if len(obList) == 1:
ob = "Unwrap %i Selected Mesh"
else:
ob = "Unwrap %i Selected Meshes"
# HACK, loop until mouse is lifted.
'''
while Window.GetMouseButtons() != 0:
sys.sleep(10)
'''
if not Draw.PupBlock(ob % len(obList), pup_block):
return
del ob
# Convert from being button types
USER_PROJECTION_LIMIT = USER_PROJECTION_LIMIT.val
USER_ONLY_SELECTED_FACES = USER_ONLY_SELECTED_FACES.val
USER_STRETCH_ASPECT = USER_STRETCH_ASPECT.val
USER_MARGIN = USER_MARGIN.val
USER_FILL_HOLES = USER_FILL_HOLES.val
USER_FILL_HOLES_QUALITY = USER_FILL_HOLES_QUALITY.val
USER_PROJECTION_LIMIT_CONVERTED = cos(USER_PROJECTION_LIMIT * DEG_TO_RAD)
USER_PROJECTION_LIMIT_HALF_CONVERTED = cos((USER_PROJECTION_LIMIT/2) * DEG_TO_RAD)
# Toggle Edit mode
is_editmode = Window.EditMode()
if is_editmode:
Window.EditMode(0)
# Assume face select mode! an annoying hack to toggle face select mode because Mesh dosent like faceSelectMode.
Window.WaitCursor(1)
SELECT_FLAG = Mesh.FaceFlags['SELECT']
time1 = sys.time()
for ob in obList:
# Only meshes
if ob.getType() != 'Mesh':
continue
me = ob.getData(mesh=1)
if not me.faceUV: # Mesh has no UV Coords, dont bother.
continue
if USER_ONLY_SELECTED_FACES:
meshFaces = [f for f in me.faces if f.flag & SELECT_FLAG]
else:
meshFaces = [f for f in me.faces]
if not meshFaces:
continue
#print '\n\n\nArchimap UV Unwrapper, mapping "%s", %i faces.' % (me.name, len(meshFaces))
Window.DrawProgressBar(0.1, 'Archimap UV Unwrapper, mapping "%s", %i faces.' % (me.name, len(meshFaces)))
# Generate Projection
projectVecs = [] # We add to this allong the way
# =======
# Generate a projection list from face normals, this is ment to be smart :)
# make a list of face props that are in sync with meshFaces
# Make a Face List that is sorted by area.
faceListProps = []
for f in meshFaces:
area = faceArea(f)
if area <= SMALL_NUM:
f.uv = [Vector(0.0, 0.0)] * len(f.v) # Assign dummy UV
print 'found zero area face, removing.'
else:
# Store all here
n = f.no
faceListProps.append( [f, area, Vector(n)] )
del meshFaces
faceListProps.sort( lambda A, B: cmp(B[1] , A[1]) ) # Biggest first.
# Smallest first is slightly more efficient, but if the user cancels early then its better we work on the larger data.
# Generate Projection Vecs
# 0d is 1.0
# 180 IS -0.59846
# Initialize projectVecs
newProjectVec = faceListProps[0][2]
newProjectFacePropList = [faceListProps[0]] # Popping stuffs it up.
# Predent that the most unique angke is ages away to start the loop off
mostUniqueAngle = -1.0
# This is popped
tempFaceListProps = faceListProps[:]
while 1:
# If theres none there then start with the largest face
# Pick the face thats most different to all existing angles :)
mostUniqueAngle = 1.0 # 1.0 is 0d. no difference.
mostUniqueIndex = 0 # fake
fIdx = len(tempFaceListProps)
while fIdx:
fIdx-=1
angleDifference = -1.0 # 180d difference.
# Get the closest vec angle we are to.
for p in projectVecs:
angleDifference = max(angleDifference, DotVecs(p, tempFaceListProps[fIdx][2]))
if angleDifference < mostUniqueAngle:
# We have a new most different angle
mostUniqueIndex = fIdx
mostUniqueAngle = angleDifference
if mostUniqueAngle < USER_PROJECTION_LIMIT_CONVERTED:
#print 'adding', mostUniqueAngle, USER_PROJECTION_LIMIT, len(newProjectFacePropList)
newProjectVec = tempFaceListProps[mostUniqueIndex][2]
newProjectFacePropList = [tempFaceListProps.pop(mostUniqueIndex)]
else:
if len(projectVecs) >= 1: # Must have at least 2 projections
break
# Now we have found the most different vector, add all the faces that are close.
fIdx = len(tempFaceListProps)
while fIdx:
fIdx -= 1
# Use half the angle limit so we dont overweight faces towards this
# normal and hog all the faces.
if DotVecs(newProjectVec, tempFaceListProps[fIdx][2]) > USER_PROJECTION_LIMIT_HALF_CONVERTED:
newProjectFacePropList.append(tempFaceListProps.pop(fIdx))
# Now weight the vector to all its faces, will give a more direct projection
# if the face its self was not representive of the normal from surrounding faces.
averageVec = Vector([0,0,0])
for fprop in newProjectFacePropList:
averageVec += (fprop[2] * fprop[1]) # / len(newProjectFacePropList)
if averageVec.x != 0 or averageVec.y != 0 or averageVec.z != 0: # Avoid NAN
averageVec.normalize()
projectVecs.append(averageVec)
# Now we have used it, ignore it.
newProjectFacePropList = []
# If there are only zero area faces then its possible
# there are no projectionVecs
if not len(projectVecs):
Draw.PupMenu('error, no projection vecs where generated, 0 area faces can cause this.')
return
faceProjectionGroupList =[[] for i in xrange(len(projectVecs)) ]
faceProjectionGroupListArea =[[] for i in xrange(len(projectVecs)) ]
# We need the area later, and we alredy have calculated it. so store it here.
#faceProjectionGroupListArea =[[] for i in xrange(len(projectVecs)) ]
# MAP and Arrange # We know there are 3 or 4 faces here
fIdx = len(faceListProps)
while fIdx:
fIdx-=1
fvec = Vector(faceListProps[fIdx][2])
i = len(projectVecs)
# Initialize first
bestAng = DotVecs(fvec, projectVecs[0])
bestAngIdx = 0
# Cycle through the remaining, first alredy done
while i-1:
i-=1
newAng = DotVecs(fvec, projectVecs[i])
if newAng > bestAng: # Reverse logic for dotvecs
bestAng = newAng
bestAngIdx = i
# Store the area for later use.
faceProjectionGroupList[bestAngIdx].append(faceListProps[fIdx][0])
faceProjectionGroupListArea[bestAngIdx].append(faceListProps[fIdx][1])
# Cull faceProjectionGroupList,
# Now faceProjectionGroupList is full of faces that face match the project Vecs list
i= len(projectVecs)
while i:
i-=1
# Account for projectVecs having no faces.
if not faceProjectionGroupList[i]:
continue
# Make a projection matrix from a unit length vector.
MatProj = VectoMat(projectVecs[i])
# Get the faces UV's from the projected vertex.
for f in faceProjectionGroupList[i]:
f.uv = [MatProj * v.co for v in f.v]
packLinkedUvs(faceProjectionGroupList, faceProjectionGroupListArea, me)
print "ArchiMap time: %.2f" % (sys.time() - time1)
Window.DrawProgressBar(0.9, "ArchiMap Done, time: %.2f sec." % (sys.time() - time1))
# Update and dont mess with edge data.
# OLD NMESH # me.update(0, (me.edges != []), 0)
Window.DrawProgressBar(1.0, "")
Window.WaitCursor(0)
Window.RedrawAll()
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print '\nUser Canceled.'
Draw.PupMenu('user canceled execution, unwrap aborted.')
Window.DrawProgressBar(1.0, "")
Window.WaitCursor(0)