blender/intern/memutil/MEM_CacheLimiter.h
Sergey Sharybin 76ee9783a1 Improved cache management for movie clips from tomato branch
Replace pseudo-LRU approach of determining which buffer
to remove when running out of space allowed for cache
with approach which would remove the frame which is most
far away from newly added frame.

This is still a bit tricky because it's impossible to
distinguish which frame to delete in situation of:

        CCCC...CC
           ^

it's either user wants to extend left segment of cached
frames and buffers from right segment should be removed
or he wants to join this two segments and in that case
buffers from right segment should be removed.

Would need a bit more investigation which situation
is more common in general usecase.

Additional changes:

- Cleanup some memutil files (which are familiar to cache limiter)

- Add option to make moviecache verbose. If DEBUG_MESSAGES is
  defined in moviecache.c detailed logs would be printed to the
  console.

- Movie caches are now named which helps reading debug messages.
2012-07-10 14:43:50 +00:00

278 lines
6.1 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Peter Schlaile <peter@schlaile.de> 2005
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file memutil/MEM_CacheLimiter.h
* \ingroup memutil
*/
#ifndef __MEM_CACHELIMITER_H__
#define __MEM_CACHELIMITER_H__
/**
* @section MEM_CacheLimiter
* This class defines a generic memory cache management system
* to limit memory usage to a fixed global maximum.
*
* Please use the C-API in MEM_CacheLimiterC-Api.h for code written in C.
*
* Usage example:
*
* class BigFatImage {
* public:
* ~BigFatImage() { tell_everyone_we_are_gone(this); }
* };
*
* void doit() {
* MEM_Cache<BigFatImage> BigFatImages;
*
* MEM_Cache_Handle<BigFatImage>* h = BigFatImages.insert(new BigFatImage);
*
* BigFatImages.enforce_limits();
* h->ref();
*
* work with image...
*
* h->unref();
*
* leave image in cache.
*/
#include <list>
#include <queue>
#include <vector>
#include "MEM_Allocator.h"
template<class T>
class MEM_CacheLimiter;
#ifndef __MEM_CACHELIMITERC_API_H__
extern "C" {
void MEM_CacheLimiter_set_maximum(size_t m);
size_t MEM_CacheLimiter_get_maximum();
};
#endif
template<class T>
class MEM_CacheLimiterHandle {
public:
explicit MEM_CacheLimiterHandle(T * data_,MEM_CacheLimiter<T> *parent_) :
data(data_),
refcount(0),
parent(parent_)
{ }
void ref() {
refcount++;
}
void unref() {
refcount--;
}
T *get() {
return data;
}
const T *get() const {
return data;
}
int get_refcount() const {
return refcount;
}
bool can_destroy() const {
return !data || !refcount;
}
bool destroy_if_possible() {
if (can_destroy()) {
delete data;
data = 0;
unmanage();
return true;
}
return false;
}
void unmanage() {
parent->unmanage(this);
}
void touch() {
parent->touch(this);
}
void set_priority(int priority) {
this->priority = priority;
}
int get_priority(void) {
return this->priority;
}
private:
friend class MEM_CacheLimiter<T>;
T * data;
int refcount;
int priority;
typename std::list<MEM_CacheLimiterHandle<T> *, MEM_Allocator<MEM_CacheLimiterHandle<T> *> >::iterator me;
MEM_CacheLimiter<T> * parent;
};
template<class T>
class MEM_CacheLimiter {
public:
typedef size_t (*MEM_CacheLimiter_DataSize_Func) (void *data);
typedef int (*MEM_CacheLimiter_ItemPriority_Func) (void *item, int default_priority);
MEM_CacheLimiter(MEM_CacheLimiter_DataSize_Func getDataSize_)
: getDataSize(getDataSize_) {
}
~MEM_CacheLimiter() {
for (iterator it = queue.begin(); it != queue.end(); it++) {
delete *it;
}
}
MEM_CacheLimiterHandle<T> *insert(T * elem) {
queue.push_back(new MEM_CacheLimiterHandle<T>(elem, this));
iterator it = queue.end();
--it;
queue.back()->me = it;
return queue.back();
}
void unmanage(MEM_CacheLimiterHandle<T> *handle) {
queue.erase(handle->me);
delete handle;
}
void enforce_limits() {
MEM_CachePriorityQueue priority_queue;
size_t max = MEM_CacheLimiter_get_maximum();
size_t mem_in_use, cur_size;
if (max == 0) {
return;
}
if(getDataSize) {
mem_in_use = total_size();
} else {
mem_in_use = MEM_get_memory_in_use();
}
if (mem_in_use <= max) {
return;
}
priority_queue = get_priority_queue();
while (!priority_queue.empty() && mem_in_use > max) {
MEM_CacheElementPtr elem = priority_queue.top();
priority_queue.pop();
if(getDataSize) {
cur_size = getDataSize(elem->get()->get_data());
} else {
cur_size = mem_in_use;
}
if (elem->destroy_if_possible()) {
if (getDataSize) {
mem_in_use -= cur_size;
} else {
mem_in_use -= cur_size - MEM_get_memory_in_use();
}
}
}
}
void touch(MEM_CacheLimiterHandle<T> * handle) {
queue.push_back(handle);
queue.erase(handle->me);
iterator it = queue.end();
--it;
handle->me = it;
}
void set_item_priority_func(MEM_CacheLimiter_ItemPriority_Func item_priority_func) {
getItemPriority = item_priority_func;
}
private:
typedef MEM_CacheLimiterHandle<T> *MEM_CacheElementPtr;
typedef std::list<MEM_CacheElementPtr, MEM_Allocator<MEM_CacheElementPtr> > MEM_CacheQueue;
typedef typename MEM_CacheQueue::iterator iterator;
struct compare_element_priority : public std::binary_function<MEM_CacheElementPtr, MEM_CacheElementPtr, bool> {
bool operator()(const MEM_CacheElementPtr left_elem, const MEM_CacheElementPtr right_elem) const {
return left_elem->get_priority() > right_elem->get_priority();
}
};
typedef std::priority_queue<MEM_CacheElementPtr, std::vector<MEM_CacheElementPtr>, compare_element_priority > MEM_CachePriorityQueue;
size_t total_size() {
size_t size = 0;
for (iterator it = queue.begin(); it != queue.end(); it++) {
size+= getDataSize((*it)->get()->get_data());
}
return size;
}
MEM_CachePriorityQueue get_priority_queue(void) {
MEM_CachePriorityQueue priority_queue;
iterator it;
int i;
for (it = queue.begin(), i = 0; it != queue.end(); it++, i++) {
MEM_CacheElementPtr elem = *it;
int priority;
/* by default 0 means higherst priority element */
priority = -(queue.size() - i - 1);
if (getItemPriority) {
priority = getItemPriority(elem->get()->get_data(), priority);
}
elem->set_priority(priority);
priority_queue.push(elem);
}
return priority_queue;
}
MEM_CacheQueue queue;
MEM_CacheLimiter_DataSize_Func getDataSize;
MEM_CacheLimiter_ItemPriority_Func getItemPriority;
};
#endif // __MEM_CACHELIMITER_H__