blender/source/gameengine/Rasterizer/RAS_MeshObject.cpp
Benoit Bolsee 386122ada6 BGE performance, 4th round: logic
This commit extends the technique of dynamic linked list to the logic
system to eliminate as much as possible temporaries, map lookup or 
full scan. The logic engine is now free of memory allocation, which is
an important stability factor. 

The overhead of the logic system is reduced by a factor between 3 and 6
depending on the logic setup. This is the speed-up you can expect on 
a logic setup using simple bricks. Heavy bricks like python controllers
and ray sensors will still take about the same time to execute so the
speed up will be less important.

The core of the logic engine has been much reworked but the functionality
is still the same except for one thing: the priority system on the 
execution of controllers. The exact same remark applies to actuators but
I'll explain for controllers only:

Previously, it was possible, with the "executePriority" attribute to set
a controller to run before any other controllers in the game. Other than
that, the sequential execution of controllers, as defined in Blender was
guaranteed by default.

With the new system, the sequential execution of controllers is still 
guaranteed but only within the controllers of one object. the user can
no longer set a controller to run before any other controllers in the
game. The "executePriority" attribute controls the execution of controllers
within one object. The priority is a small number starting from 0 for the
first controller and incrementing for each controller.

If this missing feature is a must, a special method can be implemented
to set a controller to run before all other controllers.

Other improvements:
- Systematic use of reference in parameter passing to avoid unnecessary data copy
- Use pre increment in iterator instead of post increment to avoid temporary allocation
- Use const char* instead of STR_String whenever possible to avoid temporary allocation
- Fix reference counting bugs (memory leak)
- Fix a crash in certain cases of state switching and object deletion
- Minor speed up in property sensor
- Removal of objects during the game is a lot faster
2009-05-10 20:53:58 +00:00

529 lines
12 KiB
C++

/**
* $Id$
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "RAS_MeshObject.h"
#include "RAS_IRasterizer.h"
#include "MT_MinMax.h"
#include "MT_Point3.h"
#include <algorithm>
/* polygon sorting */
struct RAS_MeshObject::polygonSlot
{
float m_z;
int m_index[4];
polygonSlot() {}
/* pnorm is the normal from the plane equation that the distance from is
* used to sort again. */
void get(const RAS_TexVert *vertexarray, const unsigned short *indexarray,
int offset, int nvert, const MT_Vector3& pnorm)
{
MT_Vector3 center(0, 0, 0);
int i;
for(i=0; i<nvert; i++) {
m_index[i] = indexarray[offset+i];
center += vertexarray[m_index[i]].getXYZ();
}
/* note we don't divide center by the number of vertices, since all
* polygons have the same number of vertices, and that we leave out
* the 4-th component of the plane equation since it is constant. */
m_z = MT_dot(pnorm, center);
}
void set(unsigned short *indexarray, int offset, int nvert)
{
int i;
for(i=0; i<nvert; i++)
indexarray[offset+i] = m_index[i];
}
};
struct RAS_MeshObject::backtofront
{
bool operator()(const polygonSlot &a, const polygonSlot &b) const
{
return a.m_z < b.m_z;
}
};
struct RAS_MeshObject::fronttoback
{
bool operator()(const polygonSlot &a, const polygonSlot &b) const
{
return a.m_z > b.m_z;
}
};
/* mesh object */
STR_String RAS_MeshObject::s_emptyname = "";
RAS_MeshObject::RAS_MeshObject(Mesh* mesh, int lightlayer)
: m_lightlayer(lightlayer),
m_bModified(true),
m_bMeshModified(true),
m_mesh(mesh),
m_bDeformed(false)
{
}
RAS_MeshObject::~RAS_MeshObject()
{
vector<RAS_Polygon*>::iterator it;
for(it=m_Polygons.begin(); it!=m_Polygons.end(); it++)
delete (*it);
}
bool RAS_MeshObject::MeshModified()
{
return m_bMeshModified;
}
unsigned int RAS_MeshObject::GetLightLayer()
{
return m_lightlayer;
}
int RAS_MeshObject::NumMaterials()
{
return m_materials.size();
}
const STR_String& RAS_MeshObject::GetMaterialName(unsigned int matid)
{
RAS_MeshMaterial* mmat = GetMeshMaterial(matid);
if(mmat)
return mmat->m_bucket->GetPolyMaterial()->GetMaterialName();
return s_emptyname;
}
RAS_MeshMaterial* RAS_MeshObject::GetMeshMaterial(unsigned int matid)
{
if (m_materials.size() > 0 && (matid < m_materials.size()))
{
list<RAS_MeshMaterial>::iterator it = m_materials.begin();
while (matid--) ++it;
return &*it;
}
return NULL;
}
int RAS_MeshObject::NumPolygons()
{
return m_Polygons.size();
}
RAS_Polygon* RAS_MeshObject::GetPolygon(int num) const
{
return m_Polygons[num];
}
list<RAS_MeshMaterial>::iterator GetFirstMaterial();
list<RAS_MeshMaterial>::iterator GetLastMaterial();
list<RAS_MeshMaterial>::iterator RAS_MeshObject::GetFirstMaterial()
{
return m_materials.begin();
}
list<RAS_MeshMaterial>::iterator RAS_MeshObject::GetLastMaterial()
{
return m_materials.end();
}
void RAS_MeshObject::SetName(const char *name)
{
m_name = name;
}
STR_String& RAS_MeshObject::GetName()
{
return m_name;
}
const STR_String& RAS_MeshObject::GetTextureName(unsigned int matid)
{
RAS_MeshMaterial* mmat = GetMeshMaterial(matid);
if(mmat)
return mmat->m_bucket->GetPolyMaterial()->GetTextureName();
return s_emptyname;
}
RAS_MeshMaterial *RAS_MeshObject::GetMeshMaterial(RAS_IPolyMaterial *mat)
{
list<RAS_MeshMaterial>::iterator mit;
/* find a mesh material */
for(mit = m_materials.begin(); mit != m_materials.end(); mit++)
if(mit->m_bucket->GetPolyMaterial() == mat)
return &*mit;
return NULL;
}
int RAS_MeshObject::GetMaterialId(RAS_IPolyMaterial *mat)
{
list<RAS_MeshMaterial>::iterator mit;
int imat;
/* find a mesh material */
for(imat=0, mit = m_materials.begin(); mit != m_materials.end(); mit++, imat++)
if(mit->m_bucket->GetPolyMaterial() == mat)
return imat;
return -1;
}
RAS_Polygon* RAS_MeshObject::AddPolygon(RAS_MaterialBucket *bucket, int numverts)
{
RAS_MeshMaterial *mmat;
RAS_Polygon *poly;
RAS_MeshSlot *slot;
/* find a mesh material */
mmat = GetMeshMaterial(bucket->GetPolyMaterial());
/* none found, create a new one */
if(!mmat) {
RAS_MeshMaterial meshmat;
meshmat.m_bucket = bucket;
meshmat.m_baseslot = meshmat.m_bucket->AddMesh(numverts);
meshmat.m_baseslot->m_mesh = this;
m_materials.push_back(meshmat);
mmat = &m_materials.back();
}
/* add it to the bucket, this also adds new display arrays */
slot = mmat->m_baseslot;
slot->AddPolygon(numverts);
/* create a new polygon */
RAS_DisplayArray *darray = slot->CurrentDisplayArray();
poly = new RAS_Polygon(bucket, darray, numverts);
m_Polygons.push_back(poly);
return poly;
}
void RAS_MeshObject::DebugColor(unsigned int abgr)
{
/*int numpolys = NumPolygons();
for (int i=0;i<numpolys;i++) {
RAS_Polygon* poly = m_polygons[i];
for (int v=0;v<poly->VertexCount();v++)
RAS_TexVert* vtx = poly->GetVertex(v)->setDebugRGBA(abgr);
}
*/
/* m_debugcolor = abgr; */
}
void RAS_MeshObject::SetVertexColor(RAS_IPolyMaterial* mat,MT_Vector4 rgba)
{
RAS_MeshMaterial *mmat = GetMeshMaterial(mat);
RAS_MeshSlot *slot = mmat->m_baseslot;
RAS_MeshSlot::iterator it;
size_t i;
for(slot->begin(it); !slot->end(it); slot->next(it))
for(i=it.startvertex; i<it.endvertex; i++)
it.vertex[i].SetRGBA(rgba);
}
void RAS_MeshObject::AddVertex(RAS_Polygon *poly, int i,
const MT_Point3& xyz,
const MT_Point2& uv,
const MT_Point2& uv2,
const MT_Vector4& tangent,
const unsigned int rgba,
const MT_Vector3& normal,
bool flat,
int origindex)
{
RAS_TexVert texvert(xyz, uv, uv2, tangent, rgba, normal, flat, origindex);
RAS_MeshMaterial *mmat;
RAS_DisplayArray *darray;
RAS_MeshSlot *slot;
int offset;
mmat = GetMeshMaterial(poly->GetMaterial()->GetPolyMaterial());
slot = mmat->m_baseslot;
darray = slot->CurrentDisplayArray();
{ /* Shared Vertex! */
/* find vertices shared between faces, with the restriction
* that they exist in the same display array, and have the
* same uv coordinate etc */
vector<SharedVertex>& sharedmap = m_sharedvertex_map[origindex];
vector<SharedVertex>::iterator it;
for(it = sharedmap.begin(); it != sharedmap.end(); it++)
{
if(it->m_darray != darray)
continue;
if(!it->m_darray->m_vertex[it->m_offset].closeTo(&texvert))
continue;
/* found one, add it and we're done */
if(poly->IsVisible())
slot->AddPolygonVertex(it->m_offset);
poly->SetVertexOffset(i, it->m_offset);
return;
}
}
/* no shared vertex found, add a new one */
offset = slot->AddVertex(texvert);
if(poly->IsVisible())
slot->AddPolygonVertex(offset);
poly->SetVertexOffset(i, offset);
{ /* Shared Vertex! */
SharedVertex shared;
shared.m_darray = darray;
shared.m_offset = offset;
m_sharedvertex_map[origindex].push_back(shared);
}
}
int RAS_MeshObject::NumVertices(RAS_IPolyMaterial* mat)
{
RAS_MeshMaterial *mmat;
RAS_MeshSlot *slot;
RAS_MeshSlot::iterator it;
size_t len = 0;
mmat = GetMeshMaterial(mat);
slot = mmat->m_baseslot;
for(slot->begin(it); !slot->end(it); slot->next(it))
len += it.endvertex - it.startvertex;
return len;
}
RAS_TexVert* RAS_MeshObject::GetVertex(unsigned int matid,
unsigned int index)
{
RAS_MeshMaterial *mmat;
RAS_MeshSlot *slot;
RAS_MeshSlot::iterator it;
size_t len;
mmat = GetMeshMaterial(matid);
if(!mmat)
return NULL;
slot = mmat->m_baseslot;
len = 0;
for(slot->begin(it); !slot->end(it); slot->next(it)) {
if(index >= len + it.endvertex - it.startvertex)
len += it.endvertex - it.startvertex;
else
return &it.vertex[index - len];
}
return NULL;
}
void RAS_MeshObject::AddMeshUser(void *clientobj, SG_QList *head)
{
list<RAS_MeshMaterial>::iterator it;
for(it = m_materials.begin();it!=m_materials.end();++it) {
/* always copy from the base slot, which is never removed
* since new objects can be created with the same mesh data */
RAS_MeshSlot *ms = it->m_bucket->CopyMesh(it->m_baseslot);
ms->m_clientObj = clientobj;
it->m_slots.insert(clientobj, ms);
head->QAddBack(ms);
}
}
void RAS_MeshObject::UpdateBuckets(void* clientobj,
double* oglmatrix,
bool useObjectColor,
const MT_Vector4& rgbavec,
bool visible,
bool culled)
{
list<RAS_MeshMaterial>::iterator it;
for(it = m_materials.begin();it!=m_materials.end();++it) {
RAS_MeshSlot **msp = it->m_slots[clientobj];
if(!msp)
continue;
RAS_MeshSlot *ms = *msp;
ms->m_mesh = this;
ms->m_OpenGLMatrix = oglmatrix;
ms->m_bObjectColor = useObjectColor;
ms->m_RGBAcolor = rgbavec;
ms->m_bVisible = visible;
ms->m_bCulled = culled || !visible;
if (!ms->m_bCulled)
ms->m_bucket->ActivateMesh(ms);
/* split if necessary */
#ifdef USE_SPLIT
ms->Split();
#endif
}
}
void RAS_MeshObject::RemoveFromBuckets(void *clientobj)
{
list<RAS_MeshMaterial>::iterator it;
for(it = m_materials.begin();it!=m_materials.end();++it) {
RAS_MeshSlot **msp = it->m_slots[clientobj];
if(!msp)
continue;
RAS_MeshSlot *ms = *msp;
it->m_bucket->RemoveMesh(ms);
it->m_slots.remove(clientobj);
}
}
//void RAS_MeshObject::Transform(const MT_Transform& trans)
//{
//m_trans.translate(MT_Vector3(0,0,1));//.operator *=(trans);
// for (int i=0;i<m_Polygons.size();i++)
// {
// m_Polygons[i]->Transform(trans);
// }
//}
/*
void RAS_MeshObject::RelativeTransform(const MT_Vector3& vec)
{
for (int i=0;i<m_Polygons.size();i++)
{
m_Polygons[i]->RelativeTransform(vec);
}
}
*/
void RAS_MeshObject::SortPolygons(RAS_MeshSlot& ms, const MT_Transform &transform)
{
// Limitations: sorting is quite simple, and handles many
// cases wrong, partially due to polygons being sorted per
// bucket.
//
// a) mixed triangles/quads are sorted wrong
// b) mixed materials are sorted wrong
// c) more than 65k faces are sorted wrong
// d) intersecting objects are sorted wrong
// e) intersecting polygons are sorted wrong
//
// a) can be solved by making all faces either triangles or quads
// if they need to be z-sorted. c) could be solved by allowing
// larger buckets, b) and d) cannot be solved easily if we want
// to avoid excessive state changes while drawing. e) would
// require splitting polygons.
RAS_MeshSlot::iterator it;
size_t j;
for(ms.begin(it); !ms.end(it); ms.next(it)) {
unsigned int nvert = (int)it.array->m_type;
unsigned int totpoly = it.totindex/nvert;
if(totpoly <= 1)
continue;
if(it.array->m_type == RAS_DisplayArray::LINE)
continue;
// Extract camera Z plane...
const MT_Vector3 pnorm(transform.getBasis()[2]);
// unneeded: const MT_Scalar pval = transform.getOrigin()[2];
vector<polygonSlot> slots(totpoly);
/* get indices and z into temporary array */
for(j=0; j<totpoly; j++)
slots[j].get(it.vertex, it.index, j*nvert, nvert, pnorm);
/* sort (stable_sort might be better, if flickering happens?) */
std::sort(slots.begin(), slots.end(), backtofront());
/* get indices from temporary array again */
for(j=0; j<totpoly; j++)
slots[j].set(it.index, j*nvert, nvert);
}
}
void RAS_MeshObject::SchedulePolygons(int drawingmode)
{
if (m_bModified)
{
m_bModified = false;
m_bMeshModified = true;
}
}