forked from bartvdbraak/blender
251 lines
5.6 KiB
C++
251 lines
5.6 KiB
C++
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Original Author: Laurence
|
|
* Contributor(s): Brecht
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file iksolver/intern/MT_ExpMap.cpp
|
|
* \ingroup iksolver
|
|
*/
|
|
|
|
|
|
#include "MT_ExpMap.h"
|
|
|
|
/**
|
|
* Set the exponential map from a quaternion. The quaternion must be non-zero.
|
|
*/
|
|
|
|
void
|
|
MT_ExpMap::
|
|
setRotation(
|
|
const MT_Quaternion &q)
|
|
{
|
|
// ok first normalize the quaternion
|
|
// then compute theta the axis-angle and the normalized axis v
|
|
// scale v by theta and that's it hopefully!
|
|
|
|
m_q = q.normalized();
|
|
m_v = MT_Vector3(m_q.x(), m_q.y(), m_q.z());
|
|
|
|
MT_Scalar cosp = m_q.w();
|
|
m_sinp = m_v.length();
|
|
m_v /= m_sinp;
|
|
|
|
m_theta = atan2(double(m_sinp), double(cosp));
|
|
m_v *= m_theta;
|
|
}
|
|
|
|
/**
|
|
* Convert from an exponential map to a quaternion
|
|
* representation
|
|
*/
|
|
|
|
const MT_Quaternion&
|
|
MT_ExpMap::
|
|
getRotation() const
|
|
{
|
|
return m_q;
|
|
}
|
|
|
|
/**
|
|
* Convert the exponential map to a 3x3 matrix
|
|
*/
|
|
|
|
MT_Matrix3x3
|
|
MT_ExpMap::
|
|
getMatrix() const
|
|
{
|
|
return MT_Matrix3x3(m_q);
|
|
}
|
|
|
|
/**
|
|
* Update & reparameterizate the exponential map
|
|
*/
|
|
|
|
void
|
|
MT_ExpMap::
|
|
update(
|
|
const MT_Vector3& dv)
|
|
{
|
|
m_v += dv;
|
|
|
|
angleUpdated();
|
|
}
|
|
|
|
/**
|
|
* Compute the partial derivatives of the exponential
|
|
* map (dR/de - where R is a 3x3 rotation matrix formed
|
|
* from the map) and return them as a 3x3 matrix
|
|
*/
|
|
|
|
void
|
|
MT_ExpMap::
|
|
partialDerivatives(
|
|
MT_Matrix3x3& dRdx,
|
|
MT_Matrix3x3& dRdy,
|
|
MT_Matrix3x3& dRdz) const
|
|
{
|
|
MT_Quaternion dQdx[3];
|
|
|
|
compute_dQdVi(dQdx);
|
|
|
|
compute_dRdVi(dQdx[0], dRdx);
|
|
compute_dRdVi(dQdx[1], dRdy);
|
|
compute_dRdVi(dQdx[2], dRdz);
|
|
}
|
|
|
|
void
|
|
MT_ExpMap::
|
|
compute_dRdVi(
|
|
const MT_Quaternion &dQdvi,
|
|
MT_Matrix3x3 & dRdvi) const
|
|
{
|
|
MT_Scalar prod[9];
|
|
|
|
/* This efficient formulation is arrived at by writing out the
|
|
* entire chain rule product dRdq * dqdv in terms of 'q' and
|
|
* noticing that all the entries are formed from sums of just
|
|
* nine products of 'q' and 'dqdv' */
|
|
|
|
prod[0] = -MT_Scalar(4) * m_q.x() * dQdvi.x();
|
|
prod[1] = -MT_Scalar(4) * m_q.y() * dQdvi.y();
|
|
prod[2] = -MT_Scalar(4) * m_q.z() * dQdvi.z();
|
|
prod[3] = MT_Scalar(2) * (m_q.y() * dQdvi.x() + m_q.x() * dQdvi.y());
|
|
prod[4] = MT_Scalar(2) * (m_q.w() * dQdvi.z() + m_q.z() * dQdvi.w());
|
|
prod[5] = MT_Scalar(2) * (m_q.z() * dQdvi.x() + m_q.x() * dQdvi.z());
|
|
prod[6] = MT_Scalar(2) * (m_q.w() * dQdvi.y() + m_q.y() * dQdvi.w());
|
|
prod[7] = MT_Scalar(2) * (m_q.z() * dQdvi.y() + m_q.y() * dQdvi.z());
|
|
prod[8] = MT_Scalar(2) * (m_q.w() * dQdvi.x() + m_q.x() * dQdvi.w());
|
|
|
|
/* first row, followed by second and third */
|
|
dRdvi[0][0] = prod[1] + prod[2];
|
|
dRdvi[0][1] = prod[3] - prod[4];
|
|
dRdvi[0][2] = prod[5] + prod[6];
|
|
|
|
dRdvi[1][0] = prod[3] + prod[4];
|
|
dRdvi[1][1] = prod[0] + prod[2];
|
|
dRdvi[1][2] = prod[7] - prod[8];
|
|
|
|
dRdvi[2][0] = prod[5] - prod[6];
|
|
dRdvi[2][1] = prod[7] + prod[8];
|
|
dRdvi[2][2] = prod[0] + prod[1];
|
|
}
|
|
|
|
// compute partial derivatives dQ/dVi
|
|
|
|
void
|
|
MT_ExpMap::
|
|
compute_dQdVi(
|
|
MT_Quaternion *dQdX) const
|
|
{
|
|
/* This is an efficient implementation of the derivatives given
|
|
* in Appendix A of the paper with common subexpressions factored out */
|
|
|
|
MT_Scalar sinc, termCoeff;
|
|
|
|
if (m_theta < MT_EXPMAP_MINANGLE) {
|
|
sinc = 0.5 - m_theta * m_theta / 48.0;
|
|
termCoeff = (m_theta * m_theta / 40.0 - 1.0) / 24.0;
|
|
}
|
|
else {
|
|
MT_Scalar cosp = m_q.w();
|
|
MT_Scalar ang = 1.0 / m_theta;
|
|
|
|
sinc = m_sinp * ang;
|
|
termCoeff = ang * ang * (0.5 * cosp - sinc);
|
|
}
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
MT_Quaternion& dQdx = dQdX[i];
|
|
int i2 = (i + 1) % 3;
|
|
int i3 = (i + 2) % 3;
|
|
|
|
MT_Scalar term = m_v[i] * termCoeff;
|
|
|
|
dQdx[i] = term * m_v[i] + sinc;
|
|
dQdx[i2] = term * m_v[i2];
|
|
dQdx[i3] = term * m_v[i3];
|
|
dQdx.w() = -0.5 * m_v[i] * sinc;
|
|
}
|
|
}
|
|
|
|
// reParametize away from singularity, updating
|
|
// m_v and m_theta
|
|
|
|
void
|
|
MT_ExpMap::
|
|
reParametrize()
|
|
{
|
|
if (m_theta > MT_PI) {
|
|
MT_Scalar scl = m_theta;
|
|
if (m_theta > MT_2_PI) { /* first get theta into range 0..2PI */
|
|
m_theta = MT_Scalar(fmod(m_theta, MT_2_PI));
|
|
scl = m_theta / scl;
|
|
m_v *= scl;
|
|
}
|
|
if (m_theta > MT_PI) {
|
|
scl = m_theta;
|
|
m_theta = MT_2_PI - m_theta;
|
|
scl = MT_Scalar(1.0) - MT_2_PI / scl;
|
|
m_v *= scl;
|
|
}
|
|
}
|
|
}
|
|
|
|
// compute cached variables
|
|
|
|
void
|
|
MT_ExpMap::
|
|
angleUpdated()
|
|
{
|
|
m_theta = m_v.length();
|
|
|
|
reParametrize();
|
|
|
|
// compute quaternion, sinp and cosp
|
|
|
|
if (m_theta < MT_EXPMAP_MINANGLE) {
|
|
m_sinp = MT_Scalar(0.0);
|
|
|
|
/* Taylor Series for sinc */
|
|
MT_Vector3 temp = m_v * MT_Scalar(MT_Scalar(.5) - m_theta * m_theta / MT_Scalar(48.0));
|
|
m_q.x() = temp.x();
|
|
m_q.y() = temp.y();
|
|
m_q.z() = temp.z();
|
|
m_q.w() = MT_Scalar(1.0);
|
|
}
|
|
else {
|
|
m_sinp = MT_Scalar(sin(.5 * m_theta));
|
|
|
|
/* Taylor Series for sinc */
|
|
MT_Vector3 temp = m_v * (m_sinp / m_theta);
|
|
m_q.x() = temp.x();
|
|
m_q.y() = temp.y();
|
|
m_q.z() = temp.z();
|
|
m_q.w() = MT_Scalar(cos(0.5 * m_theta));
|
|
}
|
|
}
|
|
|