blender/intern/iksolver/intern/MT_ExpMap.cpp
Campbell Barton f23bfdfab4 style cleanup
2012-07-27 22:35:27 +00:00

251 lines
5.6 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Original Author: Laurence
* Contributor(s): Brecht
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file iksolver/intern/MT_ExpMap.cpp
* \ingroup iksolver
*/
#include "MT_ExpMap.h"
/**
* Set the exponential map from a quaternion. The quaternion must be non-zero.
*/
void
MT_ExpMap::
setRotation(
const MT_Quaternion &q)
{
// ok first normalize the quaternion
// then compute theta the axis-angle and the normalized axis v
// scale v by theta and that's it hopefully!
m_q = q.normalized();
m_v = MT_Vector3(m_q.x(), m_q.y(), m_q.z());
MT_Scalar cosp = m_q.w();
m_sinp = m_v.length();
m_v /= m_sinp;
m_theta = atan2(double(m_sinp), double(cosp));
m_v *= m_theta;
}
/**
* Convert from an exponential map to a quaternion
* representation
*/
const MT_Quaternion&
MT_ExpMap::
getRotation() const
{
return m_q;
}
/**
* Convert the exponential map to a 3x3 matrix
*/
MT_Matrix3x3
MT_ExpMap::
getMatrix() const
{
return MT_Matrix3x3(m_q);
}
/**
* Update & reparameterizate the exponential map
*/
void
MT_ExpMap::
update(
const MT_Vector3& dv)
{
m_v += dv;
angleUpdated();
}
/**
* Compute the partial derivatives of the exponential
* map (dR/de - where R is a 3x3 rotation matrix formed
* from the map) and return them as a 3x3 matrix
*/
void
MT_ExpMap::
partialDerivatives(
MT_Matrix3x3& dRdx,
MT_Matrix3x3& dRdy,
MT_Matrix3x3& dRdz) const
{
MT_Quaternion dQdx[3];
compute_dQdVi(dQdx);
compute_dRdVi(dQdx[0], dRdx);
compute_dRdVi(dQdx[1], dRdy);
compute_dRdVi(dQdx[2], dRdz);
}
void
MT_ExpMap::
compute_dRdVi(
const MT_Quaternion &dQdvi,
MT_Matrix3x3 & dRdvi) const
{
MT_Scalar prod[9];
/* This efficient formulation is arrived at by writing out the
* entire chain rule product dRdq * dqdv in terms of 'q' and
* noticing that all the entries are formed from sums of just
* nine products of 'q' and 'dqdv' */
prod[0] = -MT_Scalar(4) * m_q.x() * dQdvi.x();
prod[1] = -MT_Scalar(4) * m_q.y() * dQdvi.y();
prod[2] = -MT_Scalar(4) * m_q.z() * dQdvi.z();
prod[3] = MT_Scalar(2) * (m_q.y() * dQdvi.x() + m_q.x() * dQdvi.y());
prod[4] = MT_Scalar(2) * (m_q.w() * dQdvi.z() + m_q.z() * dQdvi.w());
prod[5] = MT_Scalar(2) * (m_q.z() * dQdvi.x() + m_q.x() * dQdvi.z());
prod[6] = MT_Scalar(2) * (m_q.w() * dQdvi.y() + m_q.y() * dQdvi.w());
prod[7] = MT_Scalar(2) * (m_q.z() * dQdvi.y() + m_q.y() * dQdvi.z());
prod[8] = MT_Scalar(2) * (m_q.w() * dQdvi.x() + m_q.x() * dQdvi.w());
/* first row, followed by second and third */
dRdvi[0][0] = prod[1] + prod[2];
dRdvi[0][1] = prod[3] - prod[4];
dRdvi[0][2] = prod[5] + prod[6];
dRdvi[1][0] = prod[3] + prod[4];
dRdvi[1][1] = prod[0] + prod[2];
dRdvi[1][2] = prod[7] - prod[8];
dRdvi[2][0] = prod[5] - prod[6];
dRdvi[2][1] = prod[7] + prod[8];
dRdvi[2][2] = prod[0] + prod[1];
}
// compute partial derivatives dQ/dVi
void
MT_ExpMap::
compute_dQdVi(
MT_Quaternion *dQdX) const
{
/* This is an efficient implementation of the derivatives given
* in Appendix A of the paper with common subexpressions factored out */
MT_Scalar sinc, termCoeff;
if (m_theta < MT_EXPMAP_MINANGLE) {
sinc = 0.5 - m_theta * m_theta / 48.0;
termCoeff = (m_theta * m_theta / 40.0 - 1.0) / 24.0;
}
else {
MT_Scalar cosp = m_q.w();
MT_Scalar ang = 1.0 / m_theta;
sinc = m_sinp * ang;
termCoeff = ang * ang * (0.5 * cosp - sinc);
}
for (int i = 0; i < 3; i++) {
MT_Quaternion& dQdx = dQdX[i];
int i2 = (i + 1) % 3;
int i3 = (i + 2) % 3;
MT_Scalar term = m_v[i] * termCoeff;
dQdx[i] = term * m_v[i] + sinc;
dQdx[i2] = term * m_v[i2];
dQdx[i3] = term * m_v[i3];
dQdx.w() = -0.5 * m_v[i] * sinc;
}
}
// reParametize away from singularity, updating
// m_v and m_theta
void
MT_ExpMap::
reParametrize()
{
if (m_theta > MT_PI) {
MT_Scalar scl = m_theta;
if (m_theta > MT_2_PI) { /* first get theta into range 0..2PI */
m_theta = MT_Scalar(fmod(m_theta, MT_2_PI));
scl = m_theta / scl;
m_v *= scl;
}
if (m_theta > MT_PI) {
scl = m_theta;
m_theta = MT_2_PI - m_theta;
scl = MT_Scalar(1.0) - MT_2_PI / scl;
m_v *= scl;
}
}
}
// compute cached variables
void
MT_ExpMap::
angleUpdated()
{
m_theta = m_v.length();
reParametrize();
// compute quaternion, sinp and cosp
if (m_theta < MT_EXPMAP_MINANGLE) {
m_sinp = MT_Scalar(0.0);
/* Taylor Series for sinc */
MT_Vector3 temp = m_v * MT_Scalar(MT_Scalar(.5) - m_theta * m_theta / MT_Scalar(48.0));
m_q.x() = temp.x();
m_q.y() = temp.y();
m_q.z() = temp.z();
m_q.w() = MT_Scalar(1.0);
}
else {
m_sinp = MT_Scalar(sin(.5 * m_theta));
/* Taylor Series for sinc */
MT_Vector3 temp = m_v * (m_sinp / m_theta);
m_q.x() = temp.x();
m_q.y() = temp.y();
m_q.z() = temp.z();
m_q.w() = MT_Scalar(cos(0.5 * m_theta));
}
}