blender/intern/cycles/render/buffers.cpp
Brecht Van Lommel d9773edaa3 Cycles: code refactor to bake using regular render session and tiles
There should be no user visible change from this, except that tile size
now affects performance. The goal here is to simplify bake denoising in
D3099, letting it reuse more denoising tiles and pass code.

A lot of code is now shared with regular rendering, with the two main
differences being that we read some render result passes from the bake API
when starting to render a tile, and call the bake kernel instead of the
path trace kernel.

With this kind of design where Cycles asks for tiles from the bake API,
it should eventually be easier to reduce memory usage, show tiles as
they are baked, or bake multiple passes at once, though there's still
quite some work needed for that.

Reviewers: #cycles

Subscribers: monio, wmatyjewicz, lukasstockner97, michaelknubben

Differential Revision: https://developer.blender.org/D3108
2020-05-15 20:25:24 +02:00

564 lines
15 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include "device/device.h"
#include "render/buffers.h"
#include "util/util_foreach.h"
#include "util/util_hash.h"
#include "util/util_math.h"
#include "util/util_opengl.h"
#include "util/util_time.h"
#include "util/util_types.h"
CCL_NAMESPACE_BEGIN
/* Buffer Params */
BufferParams::BufferParams()
{
width = 0;
height = 0;
full_x = 0;
full_y = 0;
full_width = 0;
full_height = 0;
denoising_data_pass = false;
denoising_clean_pass = false;
denoising_prefiltered_pass = false;
Pass::add(PASS_COMBINED, passes);
}
void BufferParams::get_offset_stride(int &offset, int &stride)
{
offset = -(full_x + full_y * width);
stride = width;
}
bool BufferParams::modified(const BufferParams &params)
{
return !(full_x == params.full_x && full_y == params.full_y && width == params.width &&
height == params.height && full_width == params.full_width &&
full_height == params.full_height && Pass::equals(passes, params.passes) &&
denoising_data_pass == params.denoising_data_pass &&
denoising_clean_pass == params.denoising_clean_pass &&
denoising_prefiltered_pass == params.denoising_prefiltered_pass);
}
int BufferParams::get_passes_size()
{
int size = 0;
for (size_t i = 0; i < passes.size(); i++)
size += passes[i].components;
if (denoising_data_pass) {
size += DENOISING_PASS_SIZE_BASE;
if (denoising_clean_pass)
size += DENOISING_PASS_SIZE_CLEAN;
if (denoising_prefiltered_pass)
size += DENOISING_PASS_SIZE_PREFILTERED;
}
return align_up(size, 4);
}
int BufferParams::get_denoising_offset()
{
int offset = 0;
for (size_t i = 0; i < passes.size(); i++)
offset += passes[i].components;
return offset;
}
int BufferParams::get_denoising_prefiltered_offset()
{
assert(denoising_prefiltered_pass);
int offset = get_denoising_offset();
offset += DENOISING_PASS_SIZE_BASE;
if (denoising_clean_pass) {
offset += DENOISING_PASS_SIZE_CLEAN;
}
return offset;
}
/* Render Buffer Task */
RenderTile::RenderTile()
{
x = 0;
y = 0;
w = 0;
h = 0;
sample = 0;
start_sample = 0;
num_samples = 0;
resolution = 0;
offset = 0;
stride = 0;
buffer = 0;
buffers = NULL;
}
/* Render Buffers */
RenderBuffers::RenderBuffers(Device *device)
: buffer(device, "RenderBuffers", MEM_READ_WRITE),
map_neighbor_copied(false),
render_time(0.0f)
{
}
RenderBuffers::~RenderBuffers()
{
buffer.free();
}
void RenderBuffers::reset(BufferParams &params_)
{
params = params_;
/* re-allocate buffer */
buffer.alloc(params.width * params.get_passes_size(), params.height);
buffer.zero_to_device();
}
void RenderBuffers::zero()
{
buffer.zero_to_device();
}
bool RenderBuffers::copy_from_device()
{
if (!buffer.device_pointer)
return false;
buffer.copy_from_device(0, params.width * params.get_passes_size(), params.height);
return true;
}
bool RenderBuffers::get_denoising_pass_rect(
int type, float exposure, int sample, int components, float *pixels)
{
if (buffer.data() == NULL) {
return false;
}
float scale = 1.0f;
float alpha_scale = 1.0f / sample;
if (type == DENOISING_PASS_PREFILTERED_COLOR || type == DENOISING_PASS_CLEAN ||
type == DENOISING_PASS_PREFILTERED_INTENSITY) {
scale *= exposure;
}
else if (type == DENOISING_PASS_PREFILTERED_VARIANCE) {
scale *= exposure * exposure * (sample - 1);
}
int offset;
if (type == DENOISING_PASS_CLEAN) {
/* The clean pass isn't changed by prefiltering, so we use the original one there. */
offset = type + params.get_denoising_offset();
scale /= sample;
}
else if (params.denoising_prefiltered_pass) {
offset = type + params.get_denoising_prefiltered_offset();
}
else {
switch (type) {
case DENOISING_PASS_PREFILTERED_DEPTH:
offset = params.get_denoising_offset() + DENOISING_PASS_DEPTH;
break;
case DENOISING_PASS_PREFILTERED_NORMAL:
offset = params.get_denoising_offset() + DENOISING_PASS_NORMAL;
break;
case DENOISING_PASS_PREFILTERED_ALBEDO:
offset = params.get_denoising_offset() + DENOISING_PASS_ALBEDO;
break;
case DENOISING_PASS_PREFILTERED_COLOR:
/* If we're not saving the prefiltering result, return the original noisy pass. */
offset = params.get_denoising_offset() + DENOISING_PASS_COLOR;
break;
default:
return false;
}
scale /= sample;
}
int pass_stride = params.get_passes_size();
int size = params.width * params.height;
float *in = buffer.data() + offset;
if (components == 1) {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
pixels[0] = in[0] * scale;
}
}
else if (components == 3) {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
pixels[0] = in[0] * scale;
pixels[1] = in[1] * scale;
pixels[2] = in[2] * scale;
}
}
else if (components == 4) {
/* Since the alpha channel is not involved in denoising, output the Combined alpha channel. */
assert(params.passes[0].type == PASS_COMBINED);
float *in_combined = buffer.data();
for (int i = 0; i < size; i++, in += pass_stride, in_combined += pass_stride, pixels += 4) {
float3 val = make_float3(in[0], in[1], in[2]);
if (type == DENOISING_PASS_PREFILTERED_COLOR && params.denoising_prefiltered_pass) {
/* Remove highlight compression from the image. */
val = color_highlight_uncompress(val);
}
pixels[0] = val.x * scale;
pixels[1] = val.y * scale;
pixels[2] = val.z * scale;
pixels[3] = saturate(in_combined[3] * alpha_scale);
}
}
else {
return false;
}
return true;
}
bool RenderBuffers::get_pass_rect(
const string &name, float exposure, int sample, int components, float *pixels)
{
if (buffer.data() == NULL) {
return false;
}
float *sample_count = NULL;
if (name == "Combined") {
int sample_offset = 0;
for (size_t j = 0; j < params.passes.size(); j++) {
Pass &pass = params.passes[j];
if (pass.type != PASS_SAMPLE_COUNT) {
sample_offset += pass.components;
continue;
}
else {
sample_count = buffer.data() + sample_offset;
break;
}
}
}
int pass_offset = 0;
for (size_t j = 0; j < params.passes.size(); j++) {
Pass &pass = params.passes[j];
/* Pass is identified by both type and name, multiple of the same type
* may exist with a different name. */
if (pass.name != name) {
pass_offset += pass.components;
continue;
}
PassType type = pass.type;
float *in = buffer.data() + pass_offset;
int pass_stride = params.get_passes_size();
float scale = (pass.filter) ? 1.0f / (float)sample : 1.0f;
float scale_exposure = (pass.exposure) ? scale * exposure : scale;
int size = params.width * params.height;
if (components == 1 && type == PASS_RENDER_TIME) {
/* Render time is not stored by kernel, but measured per tile. */
float val = (float)(1000.0 * render_time / (params.width * params.height * sample));
for (int i = 0; i < size; i++, pixels++) {
pixels[0] = val;
}
}
else if (components == 1) {
assert(pass.components == components);
/* Scalar */
if (type == PASS_DEPTH) {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = (f == 0.0f) ? 1e10f : f * scale_exposure;
}
}
else if (type == PASS_MIST) {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = saturate(f * scale_exposure);
}
}
#ifdef WITH_CYCLES_DEBUG
else if (type == PASS_BVH_TRAVERSED_NODES || type == PASS_BVH_TRAVERSED_INSTANCES ||
type == PASS_BVH_INTERSECTIONS || type == PASS_RAY_BOUNCES) {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = f * scale;
}
}
#endif
else {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = f * scale_exposure;
}
}
}
else if (components == 3) {
assert(pass.components == 4);
/* RGBA */
if (type == PASS_SHADOW) {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float invw = (f.w > 0.0f) ? 1.0f / f.w : 1.0f;
pixels[0] = f.x * invw;
pixels[1] = f.y * invw;
pixels[2] = f.z * invw;
}
}
else if (pass.divide_type != PASS_NONE) {
/* RGB lighting passes that need to divide out color */
pass_offset = 0;
for (size_t k = 0; k < params.passes.size(); k++) {
Pass &color_pass = params.passes[k];
if (color_pass.type == pass.divide_type)
break;
pass_offset += color_pass.components;
}
float *in_divide = buffer.data() + pass_offset;
for (int i = 0; i < size; i++, in += pass_stride, in_divide += pass_stride, pixels += 3) {
float3 f = make_float3(in[0], in[1], in[2]);
float3 f_divide = make_float3(in_divide[0], in_divide[1], in_divide[2]);
f = safe_divide_even_color(f * exposure, f_divide);
pixels[0] = f.x;
pixels[1] = f.y;
pixels[2] = f.z;
}
}
else {
/* RGB/vector */
for (int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
float3 f = make_float3(in[0], in[1], in[2]);
pixels[0] = f.x * scale_exposure;
pixels[1] = f.y * scale_exposure;
pixels[2] = f.z * scale_exposure;
}
}
}
else if (components == 4) {
assert(pass.components == components);
/* RGBA */
if (type == PASS_SHADOW) {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float invw = (f.w > 0.0f) ? 1.0f / f.w : 1.0f;
pixels[0] = f.x * invw;
pixels[1] = f.y * invw;
pixels[2] = f.z * invw;
pixels[3] = 1.0f;
}
}
else if (type == PASS_MOTION) {
/* need to normalize by number of samples accumulated for motion */
pass_offset = 0;
for (size_t k = 0; k < params.passes.size(); k++) {
Pass &color_pass = params.passes[k];
if (color_pass.type == PASS_MOTION_WEIGHT)
break;
pass_offset += color_pass.components;
}
float *in_weight = buffer.data() + pass_offset;
for (int i = 0; i < size; i++, in += pass_stride, in_weight += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float w = in_weight[0];
float invw = (w > 0.0f) ? 1.0f / w : 0.0f;
pixels[0] = f.x * invw;
pixels[1] = f.y * invw;
pixels[2] = f.z * invw;
pixels[3] = f.w * invw;
}
}
else if (type == PASS_CRYPTOMATTE) {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
/* x and z contain integer IDs, don't rescale them.
y and w contain matte weights, they get scaled. */
pixels[0] = f.x;
pixels[1] = f.y * scale;
pixels[2] = f.z;
pixels[3] = f.w * scale;
}
}
else {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
if (sample_count && sample_count[i * pass_stride] < 0.0f) {
scale = (pass.filter) ? -1.0f / (sample_count[i * pass_stride]) : 1.0f;
scale_exposure = (pass.exposure) ? scale * exposure : scale;
}
float4 f = make_float4(in[0], in[1], in[2], in[3]);
pixels[0] = f.x * scale_exposure;
pixels[1] = f.y * scale_exposure;
pixels[2] = f.z * scale_exposure;
/* clamp since alpha might be > 1.0 due to russian roulette */
pixels[3] = saturate(f.w * scale);
}
}
}
return true;
}
return false;
}
bool RenderBuffers::set_pass_rect(PassType type, int components, float *pixels)
{
if (buffer.data() == NULL) {
return false;
}
int pass_offset = 0;
for (size_t j = 0; j < params.passes.size(); j++) {
Pass &pass = params.passes[j];
if (pass.type != type) {
pass_offset += pass.components;
continue;
}
float *out = buffer.data() + pass_offset;
int pass_stride = params.get_passes_size();
int size = params.width * params.height;
assert(pass.components == components);
for (int i = 0; i < size; i++, out += pass_stride, pixels += components) {
for (int j = 0; j < components; j++) {
out[j] = pixels[j];
}
}
return true;
}
return false;
}
/* Display Buffer */
DisplayBuffer::DisplayBuffer(Device *device, bool linear)
: draw_width(0),
draw_height(0),
transparent(true), /* todo: determine from background */
half_float(linear),
rgba_byte(device, "display buffer byte"),
rgba_half(device, "display buffer half")
{
}
DisplayBuffer::~DisplayBuffer()
{
rgba_byte.free();
rgba_half.free();
}
void DisplayBuffer::reset(BufferParams &params_)
{
draw_width = 0;
draw_height = 0;
params = params_;
/* allocate display pixels */
if (half_float) {
rgba_half.alloc_to_device(params.width, params.height);
}
else {
rgba_byte.alloc_to_device(params.width, params.height);
}
}
void DisplayBuffer::draw_set(int width, int height)
{
assert(width <= params.width && height <= params.height);
draw_width = width;
draw_height = height;
}
void DisplayBuffer::draw(Device *device, const DeviceDrawParams &draw_params)
{
if (draw_width != 0 && draw_height != 0) {
device_memory &rgba = (half_float) ? (device_memory &)rgba_half : (device_memory &)rgba_byte;
device->draw_pixels(rgba,
0,
draw_width,
draw_height,
params.width,
params.height,
params.full_x,
params.full_y,
params.full_width,
params.full_height,
transparent,
draw_params);
}
}
bool DisplayBuffer::draw_ready()
{
return (draw_width != 0 && draw_height != 0);
}
CCL_NAMESPACE_END