forked from bartvdbraak/blender
d7fbe03a8a
For sample images see: http://www.dalaifelinto.com/?p=399 (equisolid) http://www.dalaifelinto.com/?p=389 (equidistant) The 'use_panorama' option is now part of a new Camera type: 'Panorama'. Created two other panorama cameras: - Equisolid: most of lens in the market simulate this lens - e.g. Nikon, Canon, ...) this works as a real lens up to an extent. The final result takes the sensor dimensions into account also. .:. to simulate a Nikon DX2S with a 10.5mm lens do: sensor: 23.7 x 15.7 fisheye lens: 10.5 fisheye fov: 180 render dimensions: 4288 x 2848 - Equidistant: this is not a real lens model. Although the old equidistant lens simulate this lens. The result is always as a circular fisheye that takes the whole sensor (in other words, it doesn't take the sensor into consideration). This is perfect for fulldomes ;) For the UI we have 10 to 360 as soft values and 10 to 3600 as hard values (because we can). Reference material: http://www.hdrlabs.com/tutorials/downloads_files/HDRI%20for%20CGI.pdf http://www.bobatkins.com/photography/technical/field_of_view.html Note, this is not a real simulation of the light path through the lens. The ideal solution would be this: https://graphics.stanford.edu/wikis/cs348b-11/Assignment3 http://www.graphics.stanford.edu/papers/camera/ Thanks Brecht for the fix, suggestions and code review. Kudos for the dome community for keeping me stimulated on the topic since 2009 ;) Patch partly implemented during lab time at VisGraf, IMPA - Rio de Janeiro.
492 lines
14 KiB
C
492 lines
14 KiB
C
/*
|
|
* Copyright 2011, Blender Foundation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include "kernel_differential.h"
|
|
#include "kernel_montecarlo.h"
|
|
#include "kernel_object.h"
|
|
#include "kernel_triangle.h"
|
|
#ifdef __QBVH__
|
|
#include "kernel_qbvh.h"
|
|
#else
|
|
#include "kernel_bvh.h"
|
|
#endif
|
|
#include "kernel_accumulate.h"
|
|
#include "kernel_camera.h"
|
|
#include "kernel_shader.h"
|
|
#include "kernel_light.h"
|
|
#include "kernel_emission.h"
|
|
#include "kernel_random.h"
|
|
#include "kernel_passes.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
typedef struct PathState {
|
|
uint flag;
|
|
int bounce;
|
|
|
|
int diffuse_bounce;
|
|
int glossy_bounce;
|
|
int transmission_bounce;
|
|
int transparent_bounce;
|
|
} PathState;
|
|
|
|
__device_inline void path_state_init(PathState *state)
|
|
{
|
|
state->flag = PATH_RAY_CAMERA|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP;
|
|
state->bounce = 0;
|
|
state->diffuse_bounce = 0;
|
|
state->glossy_bounce = 0;
|
|
state->transmission_bounce = 0;
|
|
state->transparent_bounce = 0;
|
|
}
|
|
|
|
__device_inline void path_state_next(KernelGlobals *kg, PathState *state, int label)
|
|
{
|
|
/* ray through transparent keeps same flags from previous ray and is
|
|
not counted as a regular bounce, transparent has separate max */
|
|
if(label & LABEL_TRANSPARENT) {
|
|
state->flag |= PATH_RAY_TRANSPARENT;
|
|
state->transparent_bounce++;
|
|
|
|
if(!kernel_data.integrator.transparent_shadows)
|
|
state->flag |= PATH_RAY_MIS_SKIP;
|
|
|
|
return;
|
|
}
|
|
|
|
state->bounce++;
|
|
|
|
/* reflection/transmission */
|
|
if(label & LABEL_REFLECT) {
|
|
state->flag |= PATH_RAY_REFLECT;
|
|
state->flag &= ~(PATH_RAY_TRANSMIT|PATH_RAY_CAMERA|PATH_RAY_TRANSPARENT);
|
|
|
|
if(label & LABEL_DIFFUSE)
|
|
state->diffuse_bounce++;
|
|
else
|
|
state->glossy_bounce++;
|
|
}
|
|
else {
|
|
kernel_assert(label & LABEL_TRANSMIT);
|
|
|
|
state->flag |= PATH_RAY_TRANSMIT;
|
|
state->flag &= ~(PATH_RAY_REFLECT|PATH_RAY_CAMERA|PATH_RAY_TRANSPARENT);
|
|
|
|
state->transmission_bounce++;
|
|
}
|
|
|
|
/* diffuse/glossy/singular */
|
|
if(label & LABEL_DIFFUSE) {
|
|
state->flag |= PATH_RAY_DIFFUSE;
|
|
state->flag &= ~(PATH_RAY_GLOSSY|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP);
|
|
}
|
|
else if(label & LABEL_GLOSSY) {
|
|
state->flag |= PATH_RAY_GLOSSY;
|
|
state->flag &= ~(PATH_RAY_DIFFUSE|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP);
|
|
}
|
|
else {
|
|
kernel_assert(label & LABEL_SINGULAR);
|
|
|
|
state->flag |= PATH_RAY_GLOSSY|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP;
|
|
state->flag &= ~PATH_RAY_DIFFUSE;
|
|
}
|
|
}
|
|
|
|
__device_inline uint path_state_ray_visibility(KernelGlobals *kg, PathState *state)
|
|
{
|
|
uint flag = state->flag;
|
|
|
|
/* for visibility, diffuse/glossy are for reflection only */
|
|
if(flag & PATH_RAY_TRANSMIT)
|
|
flag &= ~(PATH_RAY_DIFFUSE|PATH_RAY_GLOSSY);
|
|
/* for camera visibility, use render layer flags */
|
|
if(flag & PATH_RAY_CAMERA)
|
|
flag |= kernel_data.integrator.layer_flag;
|
|
|
|
return flag;
|
|
}
|
|
|
|
__device_inline float path_state_terminate_probability(KernelGlobals *kg, PathState *state, const float3 throughput)
|
|
{
|
|
if(state->flag & PATH_RAY_TRANSPARENT) {
|
|
/* transparent rays treated separately */
|
|
if(state->transparent_bounce >= kernel_data.integrator.transparent_max_bounce)
|
|
return 0.0f;
|
|
else if(state->transparent_bounce <= kernel_data.integrator.transparent_min_bounce)
|
|
return 1.0f;
|
|
}
|
|
else {
|
|
/* other rays */
|
|
if((state->bounce >= kernel_data.integrator.max_bounce) ||
|
|
(state->diffuse_bounce >= kernel_data.integrator.max_diffuse_bounce) ||
|
|
(state->glossy_bounce >= kernel_data.integrator.max_glossy_bounce) ||
|
|
(state->transmission_bounce >= kernel_data.integrator.max_transmission_bounce))
|
|
return 0.0f;
|
|
else if(state->bounce <= kernel_data.integrator.min_bounce)
|
|
return 1.0f;
|
|
}
|
|
|
|
/* probalistic termination */
|
|
return average(throughput);
|
|
}
|
|
|
|
__device_inline bool shadow_blocked(KernelGlobals *kg, PathState *state, Ray *ray, float3 *shadow)
|
|
{
|
|
*shadow = make_float3(1.0f, 1.0f, 1.0f);
|
|
|
|
if(ray->t == 0.0f)
|
|
return false;
|
|
|
|
Intersection isect;
|
|
bool result = scene_intersect(kg, ray, PATH_RAY_SHADOW_OPAQUE, &isect);
|
|
|
|
#ifdef __TRANSPARENT_SHADOWS__
|
|
if(result && kernel_data.integrator.transparent_shadows) {
|
|
/* transparent shadows work in such a way to try to minimize overhead
|
|
in cases where we don't need them. after a regular shadow ray is
|
|
cast we check if the hit primitive was potentially transparent, and
|
|
only in that case start marching. this gives on extra ray cast for
|
|
the cases were we do want transparency.
|
|
|
|
also note that for this to work correct, multi close sampling must
|
|
be used, since we don't pass a random number to shader_eval_surface */
|
|
if(shader_transparent_shadow(kg, &isect)) {
|
|
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
|
|
float3 Pend = ray->P + ray->D*ray->t;
|
|
int bounce = state->transparent_bounce;
|
|
|
|
for(;;) {
|
|
if(bounce >= kernel_data.integrator.transparent_max_bounce) {
|
|
return true;
|
|
}
|
|
else if(bounce >= kernel_data.integrator.transparent_min_bounce) {
|
|
/* todo: get random number somewhere for probabilistic terminate */
|
|
#if 0
|
|
float probability = average(throughput);
|
|
float terminate = 0.0f;
|
|
|
|
if(terminate >= probability)
|
|
return true;
|
|
|
|
throughput /= probability;
|
|
#endif
|
|
}
|
|
|
|
if(!scene_intersect(kg, ray, PATH_RAY_SHADOW_TRANSPARENT, &isect)) {
|
|
*shadow *= throughput;
|
|
return false;
|
|
}
|
|
|
|
if(!shader_transparent_shadow(kg, &isect))
|
|
return true;
|
|
|
|
ShaderData sd;
|
|
shader_setup_from_ray(kg, &sd, &isect, ray);
|
|
shader_eval_surface(kg, &sd, 0.0f, PATH_RAY_SHADOW);
|
|
|
|
throughput *= shader_bsdf_transparency(kg, &sd);
|
|
|
|
ray->P = ray_offset(sd.P, -sd.Ng);
|
|
if(ray->t != FLT_MAX)
|
|
ray->D = normalize_len(Pend - ray->P, &ray->t);
|
|
|
|
bounce++;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
__device float4 kernel_path_integrate(KernelGlobals *kg, RNG *rng, int sample, Ray ray, __global float *buffer)
|
|
{
|
|
/* initialize */
|
|
PathRadiance L;
|
|
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
|
|
float L_transparent = 0.0f;
|
|
|
|
path_radiance_init(&L, kernel_data.film.use_light_pass);
|
|
|
|
float min_ray_pdf = FLT_MAX;
|
|
float ray_pdf = 0.0f;
|
|
PathState state;
|
|
int rng_offset = PRNG_BASE_NUM;
|
|
|
|
path_state_init(&state);
|
|
|
|
/* path iteration */
|
|
for(;; rng_offset += PRNG_BOUNCE_NUM) {
|
|
/* intersect scene */
|
|
Intersection isect;
|
|
uint visibility = path_state_ray_visibility(kg, &state);
|
|
|
|
if(!scene_intersect(kg, &ray, visibility, &isect)) {
|
|
/* eval background shader if nothing hit */
|
|
if(kernel_data.background.transparent && (state.flag & PATH_RAY_CAMERA)) {
|
|
L_transparent += average(throughput);
|
|
|
|
#ifdef __PASSES__
|
|
if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
#ifdef __BACKGROUND__
|
|
/* sample background shader */
|
|
float3 L_background = indirect_background(kg, &ray, state.flag, ray_pdf);
|
|
path_radiance_accum_background(&L, throughput, L_background, state.bounce);
|
|
#endif
|
|
|
|
break;
|
|
}
|
|
|
|
/* setup shading */
|
|
ShaderData sd;
|
|
shader_setup_from_ray(kg, &sd, &isect, &ray);
|
|
float rbsdf = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF);
|
|
shader_eval_surface(kg, &sd, rbsdf, state.flag);
|
|
|
|
kernel_write_data_passes(kg, buffer, &L, &sd, sample, state.flag, throughput);
|
|
|
|
/* blurring of bsdf after bounces, for rays that have a small likelihood
|
|
of following this particular path (diffuse, rough glossy) */
|
|
if(kernel_data.integrator.filter_glossy != FLT_MAX) {
|
|
float blur_pdf = kernel_data.integrator.filter_glossy*min_ray_pdf;
|
|
|
|
if(blur_pdf < 1.0f) {
|
|
float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
|
|
shader_bsdf_blur(kg, &sd, blur_roughness);
|
|
}
|
|
}
|
|
|
|
/* holdout */
|
|
#ifdef __HOLDOUT__
|
|
if((sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK)) && (state.flag & PATH_RAY_CAMERA)) {
|
|
if(kernel_data.background.transparent) {
|
|
float3 holdout_weight;
|
|
|
|
if(sd.flag & SD_HOLDOUT_MASK)
|
|
holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
|
|
else
|
|
shader_holdout_eval(kg, &sd);
|
|
|
|
/* any throughput is ok, should all be identical here */
|
|
L_transparent += average(holdout_weight*throughput);
|
|
}
|
|
|
|
if(sd.flag & SD_HOLDOUT_MASK)
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef __EMISSION__
|
|
/* emission */
|
|
if(sd.flag & SD_EMISSION) {
|
|
float3 emission = indirect_emission(kg, &sd, isect.t, state.flag, ray_pdf);
|
|
path_radiance_accum_emission(&L, throughput, emission, state.bounce);
|
|
}
|
|
#endif
|
|
|
|
/* path termination. this is a strange place to put the termination, it's
|
|
mainly due to the mixed in MIS that we use. gives too many unneeded
|
|
shader evaluations, only need emission if we are going to terminate */
|
|
float probability = path_state_terminate_probability(kg, &state, throughput);
|
|
float terminate = path_rng(kg, rng, sample, rng_offset + PRNG_TERMINATE);
|
|
|
|
if(terminate >= probability)
|
|
break;
|
|
|
|
throughput /= probability;
|
|
|
|
#ifdef __AO__
|
|
/* ambient occlusion */
|
|
if(kernel_data.integrator.use_ambient_occlusion) {
|
|
/* todo: solve correlation */
|
|
float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U);
|
|
float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V);
|
|
|
|
float3 ao_D;
|
|
float ao_pdf;
|
|
|
|
sample_cos_hemisphere(sd.N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
|
|
|
|
if(dot(sd.Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
|
|
Ray light_ray;
|
|
float3 ao_shadow;
|
|
|
|
light_ray.P = ray_offset(sd.P, sd.Ng);
|
|
light_ray.D = ao_D;
|
|
light_ray.t = kernel_data.background.ao_distance;
|
|
#ifdef __MOTION__
|
|
light_ray.time = sd.time;
|
|
#endif
|
|
|
|
if(!shadow_blocked(kg, &state, &light_ray, &ao_shadow)) {
|
|
float3 ao_bsdf = shader_bsdf_diffuse(kg, &sd)*kernel_data.background.ao_factor;
|
|
path_radiance_accum_ao(&L, throughput, ao_bsdf, ao_shadow, state.bounce);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef __EMISSION__
|
|
if(kernel_data.integrator.use_direct_light) {
|
|
/* sample illumination from lights to find path contribution */
|
|
if(sd.flag & SD_BSDF_HAS_EVAL) {
|
|
float light_t = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT);
|
|
float light_o = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_F);
|
|
float light_u = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_U);
|
|
float light_v = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_V);
|
|
|
|
Ray light_ray;
|
|
BsdfEval L_light;
|
|
bool is_lamp;
|
|
|
|
#ifdef __MOTION__
|
|
light_ray.time = sd.time;
|
|
#endif
|
|
|
|
#ifdef __MULTI_LIGHT__
|
|
/* index -1 means randomly sample from distribution */
|
|
int i = (kernel_data.integrator.num_distribution)? -1: 0;
|
|
|
|
for(; i < kernel_data.integrator.num_all_lights; i++) {
|
|
#else
|
|
const int i = -1;
|
|
#endif
|
|
if(direct_emission(kg, &sd, i, light_t, light_o, light_u, light_v, &light_ray, &L_light, &is_lamp)) {
|
|
/* trace shadow ray */
|
|
float3 shadow;
|
|
|
|
if(!shadow_blocked(kg, &state, &light_ray, &shadow)) {
|
|
/* accumulate */
|
|
path_radiance_accum_light(&L, throughput, &L_light, shadow, state.bounce, is_lamp);
|
|
}
|
|
}
|
|
#ifdef __MULTI_LIGHT__
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* no BSDF? we can stop here */
|
|
if(!(sd.flag & SD_BSDF))
|
|
break;
|
|
|
|
/* sample BSDF */
|
|
float bsdf_pdf;
|
|
BsdfEval bsdf_eval;
|
|
float3 bsdf_omega_in;
|
|
differential3 bsdf_domega_in;
|
|
float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U);
|
|
float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V);
|
|
int label;
|
|
|
|
label = shader_bsdf_sample(kg, &sd, bsdf_u, bsdf_v, &bsdf_eval,
|
|
&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
|
|
|
|
shader_release(kg, &sd);
|
|
|
|
if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
|
|
break;
|
|
|
|
/* modify throughput */
|
|
path_radiance_bsdf_bounce(&L, &throughput, &bsdf_eval, bsdf_pdf, state.bounce, label);
|
|
|
|
/* set labels */
|
|
if(!(label & LABEL_TRANSPARENT)) {
|
|
ray_pdf = bsdf_pdf;
|
|
min_ray_pdf = fminf(bsdf_pdf, min_ray_pdf);
|
|
}
|
|
|
|
/* update path state */
|
|
path_state_next(kg, &state, label);
|
|
|
|
/* setup ray */
|
|
ray.P = ray_offset(sd.P, (label & LABEL_TRANSMIT)? -sd.Ng: sd.Ng);
|
|
ray.D = bsdf_omega_in;
|
|
ray.t = FLT_MAX;
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
ray.dP = sd.dP;
|
|
ray.dD = bsdf_domega_in;
|
|
#endif
|
|
}
|
|
|
|
float3 L_sum = path_radiance_sum(kg, &L);
|
|
|
|
#ifdef __CLAMP_SAMPLE__
|
|
path_radiance_clamp(&L, &L_sum, kernel_data.integrator.sample_clamp);
|
|
#endif
|
|
|
|
kernel_write_light_passes(kg, buffer, &L, sample);
|
|
|
|
return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent);
|
|
}
|
|
|
|
__device void kernel_path_trace(KernelGlobals *kg,
|
|
__global float *buffer, __global uint *rng_state,
|
|
int sample, int x, int y, int offset, int stride)
|
|
{
|
|
/* buffer offset */
|
|
int index = offset + x + y*stride;
|
|
int pass_stride = kernel_data.film.pass_stride;
|
|
|
|
rng_state += index;
|
|
buffer += index*pass_stride;
|
|
|
|
/* initialize random numbers */
|
|
RNG rng;
|
|
|
|
float filter_u;
|
|
float filter_v;
|
|
|
|
path_rng_init(kg, rng_state, sample, &rng, x, y, &filter_u, &filter_v);
|
|
|
|
/* sample camera ray */
|
|
Ray ray;
|
|
|
|
float lens_u = path_rng(kg, &rng, sample, PRNG_LENS_U);
|
|
float lens_v = path_rng(kg, &rng, sample, PRNG_LENS_V);
|
|
|
|
#ifdef __MOTION__
|
|
float time = path_rng(kg, &rng, sample, PRNG_TIME);
|
|
#else
|
|
float time = 0.0f;
|
|
#endif
|
|
|
|
camera_sample(kg, x, y, filter_u, filter_v, lens_u, lens_v, time, &ray);
|
|
|
|
/* integrate */
|
|
float4 L;
|
|
|
|
if (ray.t != 0.f)
|
|
L = kernel_path_integrate(kg, &rng, sample, ray, buffer);
|
|
else
|
|
L = make_float4(0.f, 0.f, 0.f, 0.f);
|
|
|
|
/* accumulate result in output buffer */
|
|
kernel_write_pass_float4(buffer, sample, L);
|
|
|
|
path_rng_end(kg, rng_state, rng);
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|