blender/intern/cycles/kernel/svm/svm_closure.h
Brecht Van Lommel e369a5c485 Cycles Volume Render: support for rendering of homogeneous volume with absorption.
This is the simplest possible volume rendering case, constant density inside
the volume and no scattering or emission. My plan is to tweak, verify and commit
more volume rendering effects one by one, doing it all at once makes it
difficult to verify correctness and track down bugs.

Documentation is here:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Materials/Volume

Currently this hooks into path tracing in 3 ways, which should get us pretty
far until we add more advanced light sampling. These 3 hooks are repeated in
the path tracing, branched path tracing and transparent shadow code:

* Determine active volume shader at start of the path
* Change active volume shader on transmission through a surface
* Light attenuation over line segments between camera, surfaces and background

This is work by "storm", Stuart Broadfoot, Thomas Dinges and myself.
2013-12-28 16:57:10 +01:00

735 lines
19 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
CCL_NAMESPACE_BEGIN
/* Closure Nodes */
ccl_device void svm_node_glass_setup(ShaderData *sd, ShaderClosure *sc, int type, float eta, float roughness, bool refract)
{
if(type == CLOSURE_BSDF_SHARP_GLASS_ID) {
if(refract) {
sc->data0 = eta;
sc->data1 = 0.0f;
sd->flag |= bsdf_refraction_setup(sc);
}
else
sd->flag |= bsdf_reflection_setup(sc);
}
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID) {
sc->data0 = roughness;
sc->data1 = eta;
if(refract)
sd->flag |= bsdf_microfacet_beckmann_refraction_setup(sc);
else
sd->flag |= bsdf_microfacet_beckmann_setup(sc);
}
else {
sc->data0 = roughness;
sc->data1 = eta;
if(refract)
sd->flag |= bsdf_microfacet_ggx_refraction_setup(sc);
else
sd->flag |= bsdf_microfacet_ggx_setup(sc);
}
}
ccl_device_inline ShaderClosure *svm_node_closure_get_non_bsdf(ShaderData *sd, ClosureType type, float mix_weight)
{
#ifdef __MULTI_CLOSURE__
ShaderClosure *sc = &sd->closure[sd->num_closure];
if(sd->num_closure < MAX_CLOSURE) {
sc->weight *= mix_weight;
sc->type = type;
#ifdef __OSL__
sc->prim = NULL;
#endif
sd->num_closure++;
return sc;
}
return NULL;
#else
return &sd->closure;
#endif
}
ccl_device_inline ShaderClosure *svm_node_closure_get_bsdf(ShaderData *sd, float mix_weight)
{
#ifdef __MULTI_CLOSURE__
ShaderClosure *sc = &sd->closure[sd->num_closure];
float3 weight = sc->weight * mix_weight;
float sample_weight = fabsf(average(weight));
if(sample_weight > CLOSURE_WEIGHT_CUTOFF && sd->num_closure < MAX_CLOSURE) {
sc->weight = weight;
sc->sample_weight = sample_weight;
sd->num_closure++;
#ifdef __OSL__
sc->prim = NULL;
#endif
return sc;
}
return NULL;
#else
return &sd->closure;
#endif
}
ccl_device_inline ShaderClosure *svm_node_closure_get_absorption(ShaderData *sd, float mix_weight)
{
#ifdef __MULTI_CLOSURE__
ShaderClosure *sc = &sd->closure[sd->num_closure];
float3 weight = (make_float3(1.0f, 1.0f, 1.0f) - sc->weight) * mix_weight;
float sample_weight = fabsf(average(weight));
if(sample_weight > CLOSURE_WEIGHT_CUTOFF && sd->num_closure < MAX_CLOSURE) {
sc->weight = weight;
sc->sample_weight = sample_weight;
sd->num_closure++;
#ifdef __OSL__
sc->prim = NULL;
#endif
return sc;
}
return NULL;
#else
return &sd->closure;
#endif
}
ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, float randb, int path_flag, int *offset)
{
uint type, param1_offset, param2_offset;
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset;
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);
/* note we read this extra node before weight check, so offset is added */
uint4 data_node = read_node(kg, offset);
if(mix_weight == 0.0f)
return;
float3 N = stack_valid(data_node.x)? stack_load_float3(stack, data_node.x): sd->N;
#else
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, NULL);
float mix_weight = 1.0f;
uint4 data_node = read_node(kg, offset);
float3 N = stack_valid(data_node.x)? stack_load_float3(stack, data_node.x): sd->N;
#endif
float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __uint_as_float(node.z);
float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __uint_as_float(node.w);
switch(type) {
case CLOSURE_BSDF_DIFFUSE_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
float roughness = param1;
if(roughness == 0.0f) {
sc->data0 = 0.0f;
sc->data1 = 0.0f;
sd->flag |= bsdf_diffuse_setup(sc);
}
else {
sc->data0 = roughness;
sc->data1 = 0.0f;
sd->flag |= bsdf_oren_nayar_setup(sc);
}
}
break;
}
case CLOSURE_BSDF_TRANSLUCENT_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->data0 = 0.0f;
sc->data1 = 0.0f;
sc->N = N;
sd->flag |= bsdf_translucent_setup(sc);
}
break;
}
case CLOSURE_BSDF_TRANSPARENT_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->data0 = 0.0f;
sc->data1 = 0.0f;
sc->N = N;
sd->flag |= bsdf_transparent_setup(sc);
}
break;
}
case CLOSURE_BSDF_REFLECTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
sc->data0 = param1;
sc->data1 = 0.0f;
/* setup bsdf */
if(type == CLOSURE_BSDF_REFLECTION_ID)
sd->flag |= bsdf_reflection_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_ID)
sd->flag |= bsdf_microfacet_beckmann_setup(sc);
else
sd->flag |= bsdf_microfacet_ggx_setup(sc);
}
break;
}
case CLOSURE_BSDF_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
sc->data0 = param1;
float eta = fmaxf(param2, 1.0f + 1e-5f);
sc->data1 = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
/* setup bsdf */
if(type == CLOSURE_BSDF_REFRACTION_ID)
sd->flag |= bsdf_refraction_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID)
sd->flag |= bsdf_microfacet_beckmann_refraction_setup(sc);
else
sd->flag |= bsdf_microfacet_ggx_refraction_setup(sc);
}
break;
}
case CLOSURE_BSDF_SHARP_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
/* index of refraction */
float eta = fmaxf(param2, 1.0f + 1e-5f);
eta = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
/* fresnel */
float cosNO = dot(N, sd->I);
float fresnel = fresnel_dielectric_cos(cosNO, eta);
float roughness = param1;
#ifdef __MULTI_CLOSURE__
/* reflection */
ShaderClosure *sc = &sd->closure[sd->num_closure];
float3 weight = sc->weight;
float sample_weight = sc->sample_weight;
sc = svm_node_closure_get_bsdf(sd, mix_weight*fresnel);
if(sc) {
sc->N = N;
svm_node_glass_setup(sd, sc, type, eta, roughness, false);
}
/* refraction */
sc = &sd->closure[sd->num_closure];
sc->weight = weight;
sc->sample_weight = sample_weight;
sc = svm_node_closure_get_bsdf(sd, mix_weight*(1.0f - fresnel));
if(sc) {
sc->N = N;
svm_node_glass_setup(sd, sc, type, eta, roughness, true);
}
#else
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
bool refract = (randb > fresnel);
svm_node_glass_setup(sd, sc, type, eta, roughness, refract);
}
#endif
break;
}
case CLOSURE_BSDF_WARD_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
#ifdef __ANISOTROPIC__
sc->T = stack_load_float3(stack, data_node.y);
/* rotate tangent */
float rotation = stack_load_float(stack, data_node.z);
if(rotation != 0.0f)
sc->T = rotate_around_axis(sc->T, sc->N, rotation * M_2PI_F);
/* compute roughness */
float roughness = param1;
float anisotropy = clamp(param2, -0.99f, 0.99f);
if(anisotropy < 0.0f) {
sc->data0 = roughness/(1.0f + anisotropy);
sc->data1 = roughness*(1.0f + anisotropy);
}
else {
sc->data0 = roughness*(1.0f - anisotropy);
sc->data1 = roughness/(1.0f - anisotropy);
}
sd->flag |= bsdf_ward_setup(sc);
#else
sd->flag |= bsdf_diffuse_setup(sc);
#endif
}
break;
}
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
/* sigma */
sc->data0 = clamp(param1, 0.0f, 1.0f);
sc->data1 = 0.0f;
sd->flag |= bsdf_ashikhmin_velvet_setup(sc);
}
break;
}
case CLOSURE_BSDF_DIFFUSE_TOON_ID:
case CLOSURE_BSDF_GLOSSY_TOON_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
/* Normal, Size and Smooth */
sc->N = N;
sc->data0 = param1;
sc->data1 = param2;
if (type == CLOSURE_BSDF_DIFFUSE_TOON_ID)
sd->flag |= bsdf_diffuse_toon_setup(sc);
else
sd->flag |= bsdf_glossy_toon_setup(sc);
}
break;
}
#ifdef __HAIR__
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID: {
if(sd->flag & SD_BACKFACING && sd->segment != ~0) {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->weight = make_float3(1.0f,1.0f,1.0f);
sc->N = N;
sd->flag |= bsdf_transparent_setup(sc);
}
}
else {
ShaderClosure *sc = &sd->closure[sd->num_closure];
sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
sc->data0 = param1;
sc->data1 = param2;
sc->offset = -stack_load_float(stack, data_node.z);
if(sd->segment == ~0) {
sc->T = normalize(sd->dPdv);
sc->offset = 0.0f;
}
else
sc->T = sd->dPdu;
if(type == CLOSURE_BSDF_HAIR_REFLECTION_ID) {
sd->flag |= bsdf_hair_reflection_setup(sc);
}
else {
sd->flag |= bsdf_hair_transmission_setup(sc);
}
}
}
break;
}
#endif
#ifdef __SUBSURFACE__
case CLOSURE_BSSRDF_CUBIC_ID:
case CLOSURE_BSSRDF_GAUSSIAN_ID: {
ShaderClosure *sc = &sd->closure[sd->num_closure];
float3 weight = sc->weight * mix_weight;
float sample_weight = fabsf(average(weight));
/* disable in case of diffuse ancestor, can't see it well then and
* adds considerably noise due to probabilities of continuing path
* getting lower and lower */
if(path_flag & PATH_RAY_DIFFUSE_ANCESTOR)
param1 = 0.0f;
if(sample_weight > CLOSURE_WEIGHT_CUTOFF && sd->num_closure+2 < MAX_CLOSURE) {
/* radius * scale */
float3 radius = stack_load_float3(stack, data_node.z)*param1;
/* sharpness */
float sharpness = stack_load_float(stack, data_node.w);
/* texture color blur */
float texture_blur = param2;
/* create one closure per color channel */
if(fabsf(weight.x) > 0.0f) {
sc->weight = make_float3(weight.x, 0.0f, 0.0f);
sc->sample_weight = sample_weight;
sc->data0 = radius.x;
sc->data1 = texture_blur;
sc->T.x = sharpness;
#ifdef __OSL__
sc->prim = NULL;
#endif
sc->N = N;
sd->flag |= bssrdf_setup(sc, (ClosureType)type);
sd->num_closure++;
sc++;
}
if(fabsf(weight.y) > 0.0f) {
sc->weight = make_float3(0.0f, weight.y, 0.0f);
sc->sample_weight = sample_weight;
sc->data0 = radius.y;
sc->data1 = texture_blur;
sc->T.x = sharpness;
#ifdef __OSL__
sc->prim = NULL;
#endif
sc->N = N;
sd->flag |= bssrdf_setup(sc, (ClosureType)type);
sd->num_closure++;
sc++;
}
if(fabsf(weight.z) > 0.0f) {
sc->weight = make_float3(0.0f, 0.0f, weight.z);
sc->sample_weight = sample_weight;
sc->data0 = radius.z;
sc->data1 = texture_blur;
sc->T.x = sharpness;
#ifdef __OSL__
sc->prim = NULL;
#endif
sc->N = N;
sd->flag |= bssrdf_setup(sc, (ClosureType)type);
sd->num_closure++;
sc++;
}
}
break;
}
#endif
default:
break;
}
}
ccl_device void svm_node_closure_volume(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int path_flag)
{
uint type, param1_offset, param2_offset;
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset;
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);
if(mix_weight == 0.0f)
return;
#else
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, NULL);
float mix_weight = 1.0f;
#endif
float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __uint_as_float(node.z);
float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __uint_as_float(node.w);
float density = param1;
switch(type) {
case CLOSURE_VOLUME_ABSORPTION_ID: {
ShaderClosure *sc = svm_node_closure_get_absorption(sd, mix_weight * density);
if(sc) {
sd->flag |= volume_absorption_setup(sc);
}
break;
}
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight * density);
if(sc) {
float g = param2;
sc->data0 = g;
sd->flag |= volume_henyey_greenstein_setup(sc);
}
break;
}
default:
break;
}
}
ccl_device void svm_node_closure_emission(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
svm_node_closure_get_non_bsdf(sd, CLOSURE_EMISSION_ID, mix_weight);
}
else
svm_node_closure_get_non_bsdf(sd, CLOSURE_EMISSION_ID, 1.0f);
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_EMISSION_ID;
#endif
sd->flag |= SD_EMISSION;
}
ccl_device void svm_node_closure_background(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
svm_node_closure_get_non_bsdf(sd, CLOSURE_BACKGROUND_ID, mix_weight);
}
else
svm_node_closure_get_non_bsdf(sd, CLOSURE_BACKGROUND_ID, 1.0f);
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_BACKGROUND_ID;
#endif
}
ccl_device void svm_node_closure_holdout(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
svm_node_closure_get_non_bsdf(sd, CLOSURE_HOLDOUT_ID, mix_weight);
}
else
svm_node_closure_get_non_bsdf(sd, CLOSURE_HOLDOUT_ID, 1.0f);
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_HOLDOUT_ID;
#endif
sd->flag |= SD_HOLDOUT;
}
ccl_device void svm_node_closure_ambient_occlusion(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
svm_node_closure_get_non_bsdf(sd, CLOSURE_AMBIENT_OCCLUSION_ID, mix_weight);
}
else
svm_node_closure_get_non_bsdf(sd, CLOSURE_AMBIENT_OCCLUSION_ID, 1.0f);
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_AMBIENT_OCCLUSION_ID;
#endif
sd->flag |= SD_AO;
}
/* Closure Nodes */
ccl_device_inline void svm_node_closure_store_weight(ShaderData *sd, float3 weight)
{
#ifdef __MULTI_CLOSURE__
if(sd->num_closure < MAX_CLOSURE)
sd->closure[sd->num_closure].weight = weight;
#else
sd->closure.weight = weight;
#endif
}
ccl_device void svm_node_closure_set_weight(ShaderData *sd, uint r, uint g, uint b)
{
float3 weight = make_float3(__uint_as_float(r), __uint_as_float(g), __uint_as_float(b));
svm_node_closure_store_weight(sd, weight);
}
ccl_device void svm_node_emission_set_weight_total(KernelGlobals *kg, ShaderData *sd, uint r, uint g, uint b)
{
float3 weight = make_float3(__uint_as_float(r), __uint_as_float(g), __uint_as_float(b));
if(sd->object != ~0)
weight /= object_surface_area(kg, sd->object);
svm_node_closure_store_weight(sd, weight);
}
ccl_device void svm_node_closure_weight(ShaderData *sd, float *stack, uint weight_offset)
{
float3 weight = stack_load_float3(stack, weight_offset);
svm_node_closure_store_weight(sd, weight);
}
ccl_device void svm_node_emission_weight(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint color_offset = node.y;
uint strength_offset = node.z;
uint total_power = node.w;
float strength = stack_load_float(stack, strength_offset);
float3 weight = stack_load_float3(stack, color_offset)*strength;
if(total_power && sd->object != ~0)
weight /= object_surface_area(kg, sd->object);
svm_node_closure_store_weight(sd, weight);
}
ccl_device void svm_node_mix_closure(ShaderData *sd, float *stack,
uint4 node, int *offset, float *randb)
{
#ifdef __MULTI_CLOSURE__
/* fetch weight from blend input, previous mix closures,
* and write to stack to be used by closure nodes later */
uint weight_offset, in_weight_offset, weight1_offset, weight2_offset;
decode_node_uchar4(node.y, &weight_offset, &in_weight_offset, &weight1_offset, &weight2_offset);
float weight = stack_load_float(stack, weight_offset);
weight = clamp(weight, 0.0f, 1.0f);
float in_weight = (stack_valid(in_weight_offset))? stack_load_float(stack, in_weight_offset): 1.0f;
if(stack_valid(weight1_offset))
stack_store_float(stack, weight1_offset, in_weight*(1.0f - weight));
if(stack_valid(weight2_offset))
stack_store_float(stack, weight2_offset, in_weight*weight);
#else
/* pick a closure and make the random number uniform over 0..1 again.
* closure 1 starts on the next node, for closure 2 the start is at an
* offset from the current node, so we jump */
uint weight_offset = node.y;
uint node_jump = node.z;
float weight = stack_load_float(stack, weight_offset);
weight = clamp(weight, 0.0f, 1.0f);
if(*randb < weight) {
*offset += node_jump;
*randb = *randb/weight;
}
else
*randb = (*randb - weight)/(1.0f - weight);
#endif
}
ccl_device void svm_node_add_closure(ShaderData *sd, float *stack, uint unused,
uint node_jump, int *offset, float *randb, float *closure_weight)
{
#ifdef __MULTI_CLOSURE__
/* nothing to do, handled in compiler */
#else
/* pick one of the two closures with probability 0.5. sampling quality
* is not going to be great, for that we'd need to evaluate the weights
* of the two closures being added */
float weight = 0.5f;
if(*randb < weight) {
*offset += node_jump;
*randb = *randb/weight;
}
else
*randb = (*randb - weight)/(1.0f - weight);
*closure_weight *= 2.0f;
#endif
}
/* (Bump) normal */
ccl_device void svm_node_set_normal(KernelGlobals *kg, ShaderData *sd, float *stack, uint in_direction, uint out_normal)
{
float3 normal = stack_load_float3(stack, in_direction);
sd->N = normal;
stack_store_float3(stack, out_normal, normal);
}
CCL_NAMESPACE_END