blender/intern/cycles/render/scene.cpp
Kevin Dietrich b64f0fab06 Cycles: internal support for Alembic procedurals
The implementation is currently optimized to load animation sequences once
and then quickly scrubbing through them. Later on an option should be added
to optimize for memory usage and only load the current frame into memory.

Currently mesh and curve objects are supported, including support for UV and
vertex color attributes. Missing still is support for arbitrary attributes and
motion blur, as well as better handling of changing topology. Shader assignments
are made using FaceSets found in the Alembic archive.

The animation (and constant) data of the objects inside the Alembic archive is
loaded at once at the beginning of the render and kept inside a cache. At each
frame change we simply update the right socket of the corresponding Cycles node
if the data is animated. This allows for fast playback in the viewport
(depending on the scene size and compute power).

Note this is not yet exposed in the Blender UI, it's a feature that is still under
development and not ready for general use.

Ref T79174, D3089
2021-01-25 15:51:42 +01:00

832 lines
24 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include "bvh/bvh.h"
#include "device/device.h"
#include "render/alembic.h"
#include "render/background.h"
#include "render/bake.h"
#include "render/camera.h"
#include "render/curves.h"
#include "render/film.h"
#include "render/integrator.h"
#include "render/light.h"
#include "render/mesh.h"
#include "render/object.h"
#include "render/osl.h"
#include "render/particles.h"
#include "render/procedural.h"
#include "render/scene.h"
#include "render/session.h"
#include "render/shader.h"
#include "render/svm.h"
#include "render/tables.h"
#include "render/volume.h"
#include "util/util_foreach.h"
#include "util/util_guarded_allocator.h"
#include "util/util_logging.h"
#include "util/util_progress.h"
CCL_NAMESPACE_BEGIN
DeviceScene::DeviceScene(Device *device)
: bvh_nodes(device, "__bvh_nodes", MEM_GLOBAL),
bvh_leaf_nodes(device, "__bvh_leaf_nodes", MEM_GLOBAL),
object_node(device, "__object_node", MEM_GLOBAL),
prim_tri_index(device, "__prim_tri_index", MEM_GLOBAL),
prim_tri_verts(device, "__prim_tri_verts", MEM_GLOBAL),
prim_type(device, "__prim_type", MEM_GLOBAL),
prim_visibility(device, "__prim_visibility", MEM_GLOBAL),
prim_index(device, "__prim_index", MEM_GLOBAL),
prim_object(device, "__prim_object", MEM_GLOBAL),
prim_time(device, "__prim_time", MEM_GLOBAL),
tri_shader(device, "__tri_shader", MEM_GLOBAL),
tri_vnormal(device, "__tri_vnormal", MEM_GLOBAL),
tri_vindex(device, "__tri_vindex", MEM_GLOBAL),
tri_patch(device, "__tri_patch", MEM_GLOBAL),
tri_patch_uv(device, "__tri_patch_uv", MEM_GLOBAL),
curves(device, "__curves", MEM_GLOBAL),
curve_keys(device, "__curve_keys", MEM_GLOBAL),
patches(device, "__patches", MEM_GLOBAL),
objects(device, "__objects", MEM_GLOBAL),
object_motion_pass(device, "__object_motion_pass", MEM_GLOBAL),
object_motion(device, "__object_motion", MEM_GLOBAL),
object_flag(device, "__object_flag", MEM_GLOBAL),
object_volume_step(device, "__object_volume_step", MEM_GLOBAL),
camera_motion(device, "__camera_motion", MEM_GLOBAL),
attributes_map(device, "__attributes_map", MEM_GLOBAL),
attributes_float(device, "__attributes_float", MEM_GLOBAL),
attributes_float2(device, "__attributes_float2", MEM_GLOBAL),
attributes_float3(device, "__attributes_float3", MEM_GLOBAL),
attributes_uchar4(device, "__attributes_uchar4", MEM_GLOBAL),
light_distribution(device, "__light_distribution", MEM_GLOBAL),
lights(device, "__lights", MEM_GLOBAL),
light_background_marginal_cdf(device, "__light_background_marginal_cdf", MEM_GLOBAL),
light_background_conditional_cdf(device, "__light_background_conditional_cdf", MEM_GLOBAL),
particles(device, "__particles", MEM_GLOBAL),
svm_nodes(device, "__svm_nodes", MEM_GLOBAL),
shaders(device, "__shaders", MEM_GLOBAL),
lookup_table(device, "__lookup_table", MEM_GLOBAL),
sample_pattern_lut(device, "__sample_pattern_lut", MEM_GLOBAL),
ies_lights(device, "__ies", MEM_GLOBAL)
{
memset((void *)&data, 0, sizeof(data));
}
Scene::Scene(const SceneParams &params_, Device *device)
: name("Scene"),
default_surface(NULL),
default_volume(NULL),
default_light(NULL),
default_background(NULL),
default_empty(NULL),
device(device),
dscene(device),
params(params_),
update_stats(NULL)
{
memset((void *)&dscene.data, 0, sizeof(dscene.data));
bvh = NULL;
camera = create_node<Camera>();
dicing_camera = create_node<Camera>();
lookup_tables = new LookupTables();
film = create_node<Film>();
background = create_node<Background>();
light_manager = new LightManager();
geometry_manager = new GeometryManager();
object_manager = new ObjectManager();
integrator = create_node<Integrator>();
image_manager = new ImageManager(device->info);
particle_system_manager = new ParticleSystemManager();
bake_manager = new BakeManager();
procedural_manager = new ProceduralManager();
kernels_loaded = false;
/* TODO(sergey): Check if it's indeed optimal value for the split kernel. */
max_closure_global = 1;
film->add_default(this);
/* OSL only works on the CPU */
if (device->info.has_osl)
shader_manager = ShaderManager::create(params.shadingsystem);
else
shader_manager = ShaderManager::create(SHADINGSYSTEM_SVM);
shader_manager->add_default(this);
}
Scene::~Scene()
{
free_memory(true);
}
void Scene::free_memory(bool final)
{
delete bvh;
bvh = NULL;
foreach (Shader *s, shaders)
delete s;
/* delete procedurals before other types as they may hold pointers to those types */
foreach (Procedural *p, procedurals)
delete p;
foreach (Geometry *g, geometry)
delete g;
foreach (Object *o, objects)
delete o;
foreach (Light *l, lights)
delete l;
foreach (ParticleSystem *p, particle_systems)
delete p;
shaders.clear();
geometry.clear();
objects.clear();
lights.clear();
particle_systems.clear();
procedurals.clear();
if (device) {
camera->device_free(device, &dscene, this);
film->device_free(device, &dscene, this);
background->device_free(device, &dscene);
integrator->device_free(device, &dscene, true);
object_manager->device_free(device, &dscene, true);
geometry_manager->device_free(device, &dscene, true);
shader_manager->device_free(device, &dscene, this);
light_manager->device_free(device, &dscene);
particle_system_manager->device_free(device, &dscene);
bake_manager->device_free(device, &dscene);
if (!params.persistent_data || final)
image_manager->device_free(device);
else
image_manager->device_free_builtin(device);
lookup_tables->device_free(device, &dscene);
}
if (final) {
delete lookup_tables;
delete camera;
delete dicing_camera;
delete film;
delete background;
delete integrator;
delete object_manager;
delete geometry_manager;
delete shader_manager;
delete light_manager;
delete particle_system_manager;
delete image_manager;
delete bake_manager;
delete update_stats;
delete procedural_manager;
}
}
void Scene::device_update(Device *device_, Progress &progress)
{
if (!device)
device = device_;
bool print_stats = need_data_update();
if (update_stats) {
update_stats->clear();
}
scoped_callback_timer timer([this, print_stats](double time) {
if (update_stats) {
update_stats->scene.times.add_entry({"device_update", time});
if (print_stats) {
printf("Update statistics:\n%s\n", update_stats->full_report().c_str());
}
}
});
/* The order of updates is important, because there's dependencies between
* the different managers, using data computed by previous managers.
*
* - Image manager uploads images used by shaders.
* - Camera may be used for adaptive subdivision.
* - Displacement shader must have all shader data available.
* - Light manager needs lookup tables and final mesh data to compute emission CDF.
* - Film needs light manager to run for use_light_visibility
* - Lookup tables are done a second time to handle film tables
*/
progress.set_status("Updating Shaders");
shader_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
procedural_manager->update(this, progress);
if (progress.get_cancel())
return;
progress.set_status("Updating Background");
background->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Camera");
camera->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
geometry_manager->device_update_preprocess(device, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Objects");
object_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Particle Systems");
particle_system_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Meshes");
geometry_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Objects Flags");
object_manager->device_update_flags(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Images");
image_manager->device_update(device, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Camera Volume");
camera->device_update_volume(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Lookup Tables");
lookup_tables->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Lights");
light_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Integrator");
integrator->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Film");
film->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Lookup Tables");
lookup_tables->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Baking");
bake_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
if (device->have_error() == false) {
progress.set_status("Updating Device", "Writing constant memory");
device->const_copy_to("__data", &dscene.data, sizeof(dscene.data));
}
if (print_stats) {
size_t mem_used = util_guarded_get_mem_used();
size_t mem_peak = util_guarded_get_mem_peak();
VLOG(1) << "System memory statistics after full device sync:\n"
<< " Usage: " << string_human_readable_number(mem_used) << " ("
<< string_human_readable_size(mem_used) << ")\n"
<< " Peak: " << string_human_readable_number(mem_peak) << " ("
<< string_human_readable_size(mem_peak) << ")";
}
}
Scene::MotionType Scene::need_motion()
{
if (integrator->get_motion_blur())
return MOTION_BLUR;
else if (Pass::contains(passes, PASS_MOTION))
return MOTION_PASS;
else
return MOTION_NONE;
}
float Scene::motion_shutter_time()
{
if (need_motion() == Scene::MOTION_PASS)
return 2.0f;
else
return camera->get_shuttertime();
}
bool Scene::need_global_attribute(AttributeStandard std)
{
if (std == ATTR_STD_UV)
return Pass::contains(passes, PASS_UV);
else if (std == ATTR_STD_MOTION_VERTEX_POSITION)
return need_motion() != MOTION_NONE;
else if (std == ATTR_STD_MOTION_VERTEX_NORMAL)
return need_motion() == MOTION_BLUR;
return false;
}
void Scene::need_global_attributes(AttributeRequestSet &attributes)
{
for (int std = ATTR_STD_NONE; std < ATTR_STD_NUM; std++)
if (need_global_attribute((AttributeStandard)std))
attributes.add((AttributeStandard)std);
}
bool Scene::need_update()
{
return (need_reset() || film->is_modified());
}
bool Scene::need_data_update()
{
return (background->is_modified() || image_manager->need_update() ||
object_manager->need_update() || geometry_manager->need_update() ||
light_manager->need_update() || lookup_tables->need_update() ||
integrator->is_modified() || shader_manager->need_update() ||
particle_system_manager->need_update() || bake_manager->need_update() ||
film->is_modified() || procedural_manager->need_update());
}
bool Scene::need_reset()
{
return need_data_update() || camera->is_modified();
}
void Scene::reset()
{
shader_manager->reset(this);
shader_manager->add_default(this);
/* ensure all objects are updated */
camera->tag_modified();
dicing_camera->tag_modified();
film->tag_modified();
background->tag_modified();
background->tag_update(this);
integrator->tag_update(this, Integrator::UPDATE_ALL);
object_manager->tag_update(this, ObjectManager::UPDATE_ALL);
geometry_manager->tag_update(this, GeometryManager::UPDATE_ALL);
light_manager->tag_update(this, LightManager::UPDATE_ALL);
particle_system_manager->tag_update(this);
procedural_manager->tag_update();
}
void Scene::device_free()
{
free_memory(false);
}
void Scene::collect_statistics(RenderStats *stats)
{
geometry_manager->collect_statistics(this, stats);
image_manager->collect_statistics(stats);
}
void Scene::enable_update_stats()
{
if (!update_stats) {
update_stats = new SceneUpdateStats();
}
}
DeviceRequestedFeatures Scene::get_requested_device_features()
{
DeviceRequestedFeatures requested_features;
shader_manager->get_requested_features(this, &requested_features);
/* This features are not being tweaked as often as shaders,
* so could be done selective magic for the viewport as well.
*/
bool use_motion = need_motion() == Scene::MotionType::MOTION_BLUR;
requested_features.use_hair = false;
requested_features.use_hair_thick = (params.hair_shape == CURVE_THICK);
requested_features.use_object_motion = false;
requested_features.use_camera_motion = use_motion && camera->use_motion();
foreach (Object *object, objects) {
Geometry *geom = object->get_geometry();
if (use_motion) {
requested_features.use_object_motion |= object->use_motion() | geom->get_use_motion_blur();
requested_features.use_camera_motion |= geom->get_use_motion_blur();
}
if (object->get_is_shadow_catcher()) {
requested_features.use_shadow_tricks = true;
}
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
#ifdef WITH_OPENSUBDIV
if (mesh->get_subdivision_type() != Mesh::SUBDIVISION_NONE) {
requested_features.use_patch_evaluation = true;
}
#endif
requested_features.use_true_displacement |= mesh->has_true_displacement();
}
else if (geom->is_hair()) {
requested_features.use_hair = true;
}
}
requested_features.use_background_light = light_manager->has_background_light(this);
requested_features.use_baking = bake_manager->get_baking();
requested_features.use_integrator_branched = (integrator->get_method() ==
Integrator::BRANCHED_PATH);
if (film->get_denoising_data_pass()) {
requested_features.use_denoising = true;
requested_features.use_shadow_tricks = true;
}
return requested_features;
}
bool Scene::update(Progress &progress, bool &kernel_switch_needed)
{
/* update scene */
if (need_update()) {
/* Updated used shader tag so we know which features are need for the kernel. */
shader_manager->update_shaders_used(this);
/* Update max_closures. */
KernelIntegrator *kintegrator = &dscene.data.integrator;
if (params.background) {
kintegrator->max_closures = get_max_closure_count();
}
else {
/* Currently viewport render is faster with higher max_closures, needs investigating. */
kintegrator->max_closures = MAX_CLOSURE;
}
/* Load render kernels, before device update where we upload data to the GPU. */
bool new_kernels_needed = load_kernels(progress, false);
progress.set_status("Updating Scene");
MEM_GUARDED_CALL(&progress, device_update, device, progress);
DeviceKernelStatus kernel_switch_status = device->get_active_kernel_switch_state();
kernel_switch_needed = kernel_switch_status == DEVICE_KERNEL_FEATURE_KERNEL_AVAILABLE ||
kernel_switch_status == DEVICE_KERNEL_FEATURE_KERNEL_INVALID;
if (kernel_switch_status == DEVICE_KERNEL_WAITING_FOR_FEATURE_KERNEL) {
progress.set_kernel_status("Compiling render kernels");
}
if (new_kernels_needed || kernel_switch_needed) {
progress.set_kernel_status("Compiling render kernels");
device->wait_for_availability(loaded_kernel_features);
progress.set_kernel_status("");
}
return true;
}
return false;
}
bool Scene::load_kernels(Progress &progress, bool lock_scene)
{
thread_scoped_lock scene_lock;
if (lock_scene) {
scene_lock = thread_scoped_lock(mutex);
}
DeviceRequestedFeatures requested_features = get_requested_device_features();
if (!kernels_loaded || loaded_kernel_features.modified(requested_features)) {
progress.set_status("Loading render kernels (may take a few minutes the first time)");
scoped_timer timer;
VLOG(2) << "Requested features:\n" << requested_features;
if (!device->load_kernels(requested_features)) {
string message = device->error_message();
if (message.empty())
message = "Failed loading render kernel, see console for errors";
progress.set_error(message);
progress.set_status(message);
progress.set_update();
return false;
}
progress.add_skip_time(timer, false);
VLOG(1) << "Total time spent loading kernels: " << time_dt() - timer.get_start();
kernels_loaded = true;
loaded_kernel_features = requested_features;
return true;
}
return false;
}
int Scene::get_max_closure_count()
{
if (shader_manager->use_osl()) {
/* OSL always needs the maximum as we can't predict the
* number of closures a shader might generate. */
return MAX_CLOSURE;
}
int max_closures = 0;
for (int i = 0; i < shaders.size(); i++) {
Shader *shader = shaders[i];
if (shader->used) {
int num_closures = shader->graph->get_num_closures();
max_closures = max(max_closures, num_closures);
}
}
max_closure_global = max(max_closure_global, max_closures);
if (max_closure_global > MAX_CLOSURE) {
/* This is usually harmless as more complex shader tend to get many
* closures discarded due to mixing or low weights. We need to limit
* to MAX_CLOSURE as this is hardcoded in CPU/mega kernels, and it
* avoids excessive memory usage for split kernels. */
VLOG(2) << "Maximum number of closures exceeded: " << max_closure_global << " > "
<< MAX_CLOSURE;
max_closure_global = MAX_CLOSURE;
}
return max_closure_global;
}
template<> Light *Scene::create_node<Light>()
{
Light *node = new Light();
node->set_owner(this);
lights.push_back(node);
light_manager->tag_update(this, LightManager::LIGHT_ADDED);
return node;
}
template<> Mesh *Scene::create_node<Mesh>()
{
Mesh *node = new Mesh();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::MESH_ADDED);
return node;
}
template<> Hair *Scene::create_node<Hair>()
{
Hair *node = new Hair();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::HAIR_ADDED);
return node;
}
template<> Volume *Scene::create_node<Volume>()
{
Volume *node = new Volume();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::MESH_ADDED);
return node;
}
template<> Object *Scene::create_node<Object>()
{
Object *node = new Object();
node->set_owner(this);
objects.push_back(node);
object_manager->tag_update(this, ObjectManager::OBJECT_ADDED);
return node;
}
template<> ParticleSystem *Scene::create_node<ParticleSystem>()
{
ParticleSystem *node = new ParticleSystem();
node->set_owner(this);
particle_systems.push_back(node);
particle_system_manager->tag_update(this);
return node;
}
template<> Shader *Scene::create_node<Shader>()
{
Shader *node = new Shader();
node->set_owner(this);
shaders.push_back(node);
shader_manager->tag_update(this, ShaderManager::SHADER_ADDED);
return node;
}
template<> AlembicProcedural *Scene::create_node<AlembicProcedural>()
{
#ifdef WITH_ALEMBIC
AlembicProcedural *node = new AlembicProcedural();
node->set_owner(this);
procedurals.push_back(node);
procedural_manager->tag_update();
return node;
#else
return nullptr;
#endif
}
template<typename T> void delete_node_from_array(vector<T> &nodes, T node)
{
for (size_t i = 0; i < nodes.size(); ++i) {
if (nodes[i] == node) {
std::swap(nodes[i], nodes[nodes.size() - 1]);
break;
}
}
nodes.resize(nodes.size() - 1);
delete node;
}
template<> void Scene::delete_node_impl(Light *node)
{
delete_node_from_array(lights, node);
light_manager->tag_update(this, LightManager::LIGHT_REMOVED);
}
template<> void Scene::delete_node_impl(Mesh *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::MESH_REMOVED);
}
template<> void Scene::delete_node_impl(Hair *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::HAIR_REMOVED);
}
template<> void Scene::delete_node_impl(Volume *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::MESH_REMOVED);
}
template<> void Scene::delete_node_impl(Geometry *node)
{
uint flag;
if (node->is_hair()) {
flag = GeometryManager::HAIR_REMOVED;
}
else {
flag = GeometryManager::MESH_REMOVED;
}
delete_node_from_array(geometry, node);
geometry_manager->tag_update(this, flag);
}
template<> void Scene::delete_node_impl(Object *node)
{
delete_node_from_array(objects, node);
object_manager->tag_update(this, ObjectManager::OBJECT_REMOVED);
}
template<> void Scene::delete_node_impl(ParticleSystem *node)
{
delete_node_from_array(particle_systems, node);
particle_system_manager->tag_update(this);
}
template<> void Scene::delete_node_impl(Shader * /*node*/)
{
/* don't delete unused shaders, not supported */
}
template<> void Scene::delete_node_impl(Procedural *node)
{
delete_node_from_array(procedurals, node);
procedural_manager->tag_update();
}
template<> void Scene::delete_node_impl(AlembicProcedural *node)
{
#ifdef WITH_ALEMBIC
delete_node_impl(static_cast<Procedural *>(node));
#else
(void)node;
#endif
}
template<typename T>
static void remove_nodes_in_set(const set<T *> &nodes_set,
vector<T *> &nodes_array,
const NodeOwner *owner)
{
size_t new_size = nodes_array.size();
for (size_t i = 0; i < new_size; ++i) {
T *node = nodes_array[i];
if (nodes_set.find(node) != nodes_set.end()) {
std::swap(nodes_array[i], nodes_array[new_size - 1]);
assert(node->get_owner() == owner);
delete node;
i -= 1;
new_size -= 1;
}
}
nodes_array.resize(new_size);
(void)owner;
}
template<> void Scene::delete_nodes(const set<Light *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, lights, owner);
light_manager->tag_update(this, LightManager::LIGHT_REMOVED);
}
template<> void Scene::delete_nodes(const set<Geometry *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, geometry, owner);
geometry_manager->tag_update(this, GeometryManager::GEOMETRY_REMOVED);
}
template<> void Scene::delete_nodes(const set<Object *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, objects, owner);
object_manager->tag_update(this, ObjectManager::OBJECT_REMOVED);
}
template<> void Scene::delete_nodes(const set<ParticleSystem *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, particle_systems, owner);
particle_system_manager->tag_update(this);
}
template<> void Scene::delete_nodes(const set<Shader *> & /*nodes*/, const NodeOwner * /*owner*/)
{
/* don't delete unused shaders, not supported */
}
template<> void Scene::delete_nodes(const set<Procedural *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, procedurals, owner);
procedural_manager->tag_update();
}
CCL_NAMESPACE_END