blender/intern/memutil/MEM_CacheLimiter.h
Antony Riakiotakis 15ff730b9b Change movie cache to use vectors instead of lists.
Runtime costs were horrible. On gooseberry in some sequencer edits using
proxies of small size, a cache with about 2000 elements would slow to
about 6 fps once cache was full and system tried to find smallest
element available.

There are still improvements to be done here, like requesting a number
of good candidates to avoid rerunnung through the list, or even using
some heap or ring buffer scheme to sort data, but nothing suits all
needs so for now that should bring the cache back to usable state (25fps
here at the studio)
2015-02-05 15:06:25 +01:00

314 lines
7.0 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Peter Schlaile <peter@schlaile.de> 2005
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file memutil/MEM_CacheLimiter.h
* \ingroup memutil
*/
#ifndef __MEM_CACHELIMITER_H__
#define __MEM_CACHELIMITER_H__
/**
* @section MEM_CacheLimiter
* This class defines a generic memory cache management system
* to limit memory usage to a fixed global maximum.
*
* Please use the C-API in MEM_CacheLimiterC-Api.h for code written in C.
*
* Usage example:
*
* class BigFatImage {
* public:
* ~BigFatImage() { tell_everyone_we_are_gone(this); }
* };
*
* void doit() {
* MEM_Cache<BigFatImage> BigFatImages;
*
* MEM_Cache_Handle<BigFatImage>* h = BigFatImages.insert(new BigFatImage);
*
* BigFatImages.enforce_limits();
* h->ref();
*
* work with image...
*
* h->unref();
*
* leave image in cache.
*/
#include <list>
#include <queue>
#include <vector>
#include "MEM_Allocator.h"
template<class T>
class MEM_CacheLimiter;
#ifndef __MEM_CACHELIMITERC_API_H__
extern "C" {
void MEM_CacheLimiter_set_maximum(size_t m);
size_t MEM_CacheLimiter_get_maximum();
void MEM_CacheLimiter_set_disabled(bool disabled);
bool MEM_CacheLimiter_is_disabled(void);
};
#endif
template<class T>
class MEM_CacheLimiterHandle {
public:
explicit MEM_CacheLimiterHandle(T * data_,MEM_CacheLimiter<T> *parent_) :
data(data_),
refcount(0),
parent(parent_)
{ }
void ref() {
refcount++;
}
void unref() {
refcount--;
}
T *get() {
return data;
}
const T *get() const {
return data;
}
int get_refcount() const {
return refcount;
}
bool can_destroy() const {
return !data || !refcount;
}
bool destroy_if_possible() {
if (can_destroy()) {
delete data;
data = NULL;
unmanage();
return true;
}
return false;
}
void unmanage() {
parent->unmanage(this);
}
void touch() {
parent->touch(this);
}
private:
friend class MEM_CacheLimiter<T>;
T * data;
int refcount;
int pos;
MEM_CacheLimiter<T> * parent;
};
template<class T>
class MEM_CacheLimiter {
public:
typedef size_t (*MEM_CacheLimiter_DataSize_Func) (void *data);
typedef int (*MEM_CacheLimiter_ItemPriority_Func) (void *item, int default_priority);
typedef bool (*MEM_CacheLimiter_ItemDestroyable_Func) (void *item);
MEM_CacheLimiter(MEM_CacheLimiter_DataSize_Func data_size_func)
: data_size_func(data_size_func) {
}
~MEM_CacheLimiter() {
int i;
for (i = 0; i < queue.size(); i++) {
delete queue[i];
}
}
MEM_CacheLimiterHandle<T> *insert(T * elem) {
queue.push_back(new MEM_CacheLimiterHandle<T>(elem, this));
queue.back()->pos = queue.size() - 1;
return queue.back();
}
void unmanage(MEM_CacheLimiterHandle<T> *handle) {
int pos = handle->pos;
queue[pos] = queue.back();
queue[pos]->pos = pos;
queue.pop_back();
delete handle;
}
size_t get_memory_in_use() {
size_t size = 0;
if (data_size_func) {
int i;
for (i = 0; i < queue.size(); i++) {
size += data_size_func(queue[i]->get()->get_data());
}
}
else {
size = MEM_get_memory_in_use();
}
return size;
}
void enforce_limits() {
size_t max = MEM_CacheLimiter_get_maximum();
bool is_disabled = MEM_CacheLimiter_is_disabled();
size_t mem_in_use, cur_size;
if (is_disabled) {
return;
}
if (max == 0) {
return;
}
mem_in_use = get_memory_in_use();
if (mem_in_use <= max) {
return;
}
while (!queue.empty() && mem_in_use > max) {
MEM_CacheElementPtr elem = get_least_priority_destroyable_element();
if (!elem)
break;
if (data_size_func) {
cur_size = data_size_func(elem->get()->get_data());
}
else {
cur_size = mem_in_use;
}
if (elem->destroy_if_possible()) {
if (data_size_func) {
mem_in_use -= cur_size;
}
else {
mem_in_use -= cur_size - MEM_get_memory_in_use();
}
}
}
}
void touch(MEM_CacheLimiterHandle<T> * handle) {
/* If we're using custom priority callback re-arranging the queue
* doesn't make much sense because we'll iterate it all to get
* least priority element anyway.
*/
if (item_priority_func == NULL) {
queue[handle->pos] = queue.back();
queue[handle->pos]->pos = handle->pos;
queue.pop_back();
queue.push_back(handle);
handle->pos = queue.size() - 1;
}
}
void set_item_priority_func(MEM_CacheLimiter_ItemPriority_Func item_priority_func) {
this->item_priority_func = item_priority_func;
}
void set_item_destroyable_func(MEM_CacheLimiter_ItemDestroyable_Func item_destroyable_func) {
this->item_destroyable_func = item_destroyable_func;
}
private:
typedef MEM_CacheLimiterHandle<T> *MEM_CacheElementPtr;
typedef std::vector<MEM_CacheElementPtr, MEM_Allocator<MEM_CacheElementPtr> > MEM_CacheQueue;
typedef typename MEM_CacheQueue::iterator iterator;
/* Check whether element can be destroyed when enforcing cache limits */
bool can_destroy_element(MEM_CacheElementPtr &elem) {
if (!elem->can_destroy()) {
/* Element is referenced */
return false;
}
if (item_destroyable_func) {
if (!item_destroyable_func(elem->get()->get_data()))
return false;
}
return true;
}
MEM_CacheElementPtr get_least_priority_destroyable_element(void) {
if (queue.empty())
return NULL;
MEM_CacheElementPtr best_match_elem = NULL;
if (!item_priority_func) {
for (iterator it = queue.begin(); it != queue.end(); it++) {
MEM_CacheElementPtr elem = *it;
if (!can_destroy_element(elem))
continue;
best_match_elem = elem;
break;
}
}
else {
int best_match_priority = 0;
int i;
for (i = 0; i < queue.size(); i++) {
MEM_CacheElementPtr elem = queue[i];
if (!can_destroy_element(elem))
continue;
/* by default 0 means highest priority element */
/* casting a size type to int is questionable,
but unlikely to cause problems */
int priority = -((int)(queue.size()) - i - 1);
priority = item_priority_func(elem->get()->get_data(), priority);
if (priority < best_match_priority || best_match_elem == NULL) {
best_match_priority = priority;
best_match_elem = elem;
}
}
}
return best_match_elem;
}
MEM_CacheQueue queue;
MEM_CacheLimiter_DataSize_Func data_size_func;
MEM_CacheLimiter_ItemPriority_Func item_priority_func;
MEM_CacheLimiter_ItemDestroyable_Func item_destroyable_func;
};
#endif // __MEM_CACHELIMITER_H__