blender/intern/cycles/util/util_math_float3.h
Brecht Van Lommel 0df9b2c715 Cycles: random walk subsurface scattering.
It is basically brute force volume scattering within the mesh, but part
of the SSS code for faster performance. The main difference with actual
volume scattering is that we assume the boundaries are diffuse and that
all lighting is coming through this boundary from outside the volume.

This gives much more accurate results for thin features and low density.
Some challenges remain however:

* Significantly more noisy than BSSRDF. Adding Dwivedi sampling may help
  here, but it's unclear still how much it helps in real world cases.
* Due to this being a volumetric method, geometry like eyes or mouth can
  darken the skin on the outside. We may be able to reduce this effect,
  or users can compensate for it by reducing the scattering radius in
  such areas.
* Sharp corners are quite bright. This matches actual volume rendering
  and results in some other renderers, but maybe not so much real world
  objects.

Differential Revision: https://developer.blender.org/D3054
2018-02-09 19:58:33 +01:00

386 lines
9.8 KiB
C

/*
* Copyright 2011-2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __UTIL_MATH_FLOAT3_H__
#define __UTIL_MATH_FLOAT3_H__
#ifndef __UTIL_MATH_H__
# error "Do not include this file directly, include util_types.h instead."
#endif
CCL_NAMESPACE_BEGIN
/*******************************************************************************
* Declaration.
*/
#ifndef __KERNEL_OPENCL__
ccl_device_inline float3 operator-(const float3& a);
ccl_device_inline float3 operator*(const float3& a, const float3& b);
ccl_device_inline float3 operator*(const float3& a, const float f);
ccl_device_inline float3 operator*(const float f, const float3& a);
ccl_device_inline float3 operator/(const float f, const float3& a);
ccl_device_inline float3 operator/(const float3& a, const float f);
ccl_device_inline float3 operator/(const float3& a, const float3& b);
ccl_device_inline float3 operator+(const float3& a, const float3& b);
ccl_device_inline float3 operator-(const float3& a, const float3& b);
ccl_device_inline float3 operator+=(float3& a, const float3& b);
ccl_device_inline float3 operator-=(float3& a, const float3& b);
ccl_device_inline float3 operator*=(float3& a, const float3& b);
ccl_device_inline float3 operator*=(float3& a, float f);
ccl_device_inline float3 operator/=(float3& a, const float3& b);
ccl_device_inline float3 operator/=(float3& a, float f);
ccl_device_inline bool operator==(const float3& a, const float3& b);
ccl_device_inline bool operator!=(const float3& a, const float3& b);
ccl_device_inline float dot(const float3& a, const float3& b);
ccl_device_inline float dot_xy(const float3& a, const float3& b);
ccl_device_inline float3 cross(const float3& a, const float3& b);
ccl_device_inline float3 normalize(const float3& a);
ccl_device_inline float3 min(const float3& a, const float3& b);
ccl_device_inline float3 max(const float3& a, const float3& b);
ccl_device_inline float3 clamp(const float3& a, const float3& mn, const float3& mx);
ccl_device_inline float3 fabs(const float3& a);
ccl_device_inline float3 mix(const float3& a, const float3& b, float t);
ccl_device_inline float3 rcp(const float3& a);
#endif /* !__KERNEL_OPENCL__ */
ccl_device_inline float min3(float3 a);
ccl_device_inline float max3(float3 a);
ccl_device_inline float len(const float3 a);
ccl_device_inline float len_squared(const float3 a);
ccl_device_inline float3 saturate3(float3 a);
ccl_device_inline float3 safe_normalize(const float3 a);
ccl_device_inline float3 normalize_len(const float3 a, float *t);;
ccl_device_inline float3 safe_normalize_len(const float3 a, float *t);
ccl_device_inline float3 interp(float3 a, float3 b, float t);
ccl_device_inline bool is_zero(const float3 a);
ccl_device_inline float reduce_add(const float3 a);
ccl_device_inline float average(const float3 a);
ccl_device_inline bool isequal_float3(const float3 a, const float3 b);
/*******************************************************************************
* Definition.
*/
#ifndef __KERNEL_OPENCL__
ccl_device_inline float3 operator-(const float3& a)
{
#ifdef __KERNEL_SSE__
return float3(_mm_xor_ps(a.m128, _mm_castsi128_ps(_mm_set1_epi32(0x80000000))));
#else
return make_float3(-a.x, -a.y, -a.z);
#endif
}
ccl_device_inline float3 operator*(const float3& a, const float3& b)
{
#ifdef __KERNEL_SSE__
return float3(_mm_mul_ps(a.m128,b.m128));
#else
return make_float3(a.x*b.x, a.y*b.y, a.z*b.z);
#endif
}
ccl_device_inline float3 operator*(const float3& a, const float f)
{
#ifdef __KERNEL_SSE__
return float3(_mm_mul_ps(a.m128,_mm_set1_ps(f)));
#else
return make_float3(a.x*f, a.y*f, a.z*f);
#endif
}
ccl_device_inline float3 operator*(const float f, const float3& a)
{
#if defined(__KERNEL_SSE__)
return float3(_mm_mul_ps(_mm_set1_ps(f), a.m128));
#else
return make_float3(a.x*f, a.y*f, a.z*f);
#endif
}
ccl_device_inline float3 operator/(const float f, const float3& a)
{
#if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(_mm_set1_ps(f), a.m128));
#else
return make_float3(f / a.x, f / a.y, f / a.z);
#endif
}
ccl_device_inline float3 operator/(const float3& a, const float f)
{
float invf = 1.0f/f;
return a * invf;
}
ccl_device_inline float3 operator/(const float3& a, const float3& b)
{
#if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(a.m128, b.m128));
#else
return make_float3(a.x / b.x, a.y / b.y, a.z / b.z);
#endif
}
ccl_device_inline float3 operator+(const float3& a, const float3& b)
{
#ifdef __KERNEL_SSE__
return float3(_mm_add_ps(a.m128, b.m128));
#else
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
#endif
}
ccl_device_inline float3 operator-(const float3& a, const float3& b)
{
#ifdef __KERNEL_SSE__
return float3(_mm_sub_ps(a.m128, b.m128));
#else
return make_float3(a.x - b.x, a.y - b.y, a.z - b.z);
#endif
}
ccl_device_inline float3 operator+=(float3& a, const float3& b)
{
return a = a + b;
}
ccl_device_inline float3 operator-=(float3& a, const float3& b)
{
return a = a - b;
}
ccl_device_inline float3 operator*=(float3& a, const float3& b)
{
return a = a * b;
}
ccl_device_inline float3 operator*=(float3& a, float f)
{
return a = a * f;
}
ccl_device_inline float3 operator/=(float3& a, const float3& b)
{
return a = a / b;
}
ccl_device_inline float3 operator/=(float3& a, float f)
{
float invf = 1.0f/f;
return a = a * invf;
}
ccl_device_inline bool operator==(const float3& a, const float3& b)
{
#ifdef __KERNEL_SSE__
return (_mm_movemask_ps(_mm_cmpeq_ps(a.m128, b.m128)) & 7) == 7;
#else
return (a.x == b.x && a.y == b.y && a.z == b.z);
#endif
}
ccl_device_inline bool operator!=(const float3& a, const float3& b)
{
return !(a == b);
}
ccl_device_inline float dot(const float3& a, const float3& b)
{
#if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_dp_ps(a, b, 0x7F));
#else
return a.x*b.x + a.y*b.y + a.z*b.z;
#endif
}
ccl_device_inline float dot_xy(const float3& a, const float3& b)
{
#if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_hadd_ps(_mm_mul_ps(a,b),b));
#else
return a.x*b.x + a.y*b.y;
#endif
}
ccl_device_inline float3 cross(const float3& a, const float3& b)
{
float3 r = make_float3(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x);
return r;
}
ccl_device_inline float3 normalize(const float3& a)
{
#if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
__m128 norm = _mm_sqrt_ps(_mm_dp_ps(a.m128, a.m128, 0x7F));
return float3(_mm_div_ps(a.m128, norm));
#else
return a/len(a);
#endif
}
ccl_device_inline float3 min(const float3& a, const float3& b)
{
#ifdef __KERNEL_SSE__
return float3(_mm_min_ps(a.m128, b.m128));
#else
return make_float3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z));
#endif
}
ccl_device_inline float3 max(const float3& a, const float3& b)
{
#ifdef __KERNEL_SSE__
return float3(_mm_max_ps(a.m128, b.m128));
#else
return make_float3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z));
#endif
}
ccl_device_inline float3 clamp(const float3& a, const float3& mn, const float3& mx)
{
return min(max(a, mn), mx);
}
ccl_device_inline float3 fabs(const float3& a)
{
#ifdef __KERNEL_SSE__
__m128 mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff));
return float3(_mm_and_ps(a.m128, mask));
#else
return make_float3(fabsf(a.x), fabsf(a.y), fabsf(a.z));
#endif
}
ccl_device_inline float3 mix(const float3& a, const float3& b, float t)
{
return a + t*(b - a);
}
ccl_device_inline float3 rcp(const float3& a)
{
#ifdef __KERNEL_SSE__
/* Don't use _mm_rcp_ps due to poor precision. */
return float3(_mm_div_ps(_mm_set_ps1(1.0f), a.m128));
#else
return make_float3(1.0f/a.x, 1.0f/a.y, 1.0f/a.z);
#endif
}
#endif /* !__KERNEL_OPENCL__ */
ccl_device_inline float min3(float3 a)
{
return min(min(a.x, a.y), a.z);
}
ccl_device_inline float max3(float3 a)
{
return max(max(a.x, a.y), a.z);
}
ccl_device_inline float len(const float3 a)
{
#if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_sqrt_ss(_mm_dp_ps(a.m128, a.m128, 0x7F)));
#else
return sqrtf(dot(a, a));
#endif
}
ccl_device_inline float len_squared(const float3 a)
{
return dot(a, a);
}
ccl_device_inline float3 saturate3(float3 a)
{
return make_float3(saturate(a.x), saturate(a.y), saturate(a.z));
}
ccl_device_inline float3 normalize_len(const float3 a, float *t)
{
*t = len(a);
float x = 1.0f / *t;
return a*x;
}
ccl_device_inline float3 safe_normalize(const float3 a)
{
float t = len(a);
return (t != 0.0f)? a * (1.0f/t) : a;
}
ccl_device_inline float3 safe_normalize_len(const float3 a, float *t)
{
*t = len(a);
return (*t != 0.0f)? a/(*t): a;
}
ccl_device_inline float3 interp(float3 a, float3 b, float t)
{
return a + t*(b - a);
}
ccl_device_inline bool is_zero(const float3 a)
{
#ifdef __KERNEL_SSE__
return a == make_float3(0.0f);
#else
return (a.x == 0.0f && a.y == 0.0f && a.z == 0.0f);
#endif
}
ccl_device_inline float reduce_add(const float3 a)
{
return (a.x + a.y + a.z);
}
ccl_device_inline float average(const float3 a)
{
return reduce_add(a)*(1.0f/3.0f);
}
ccl_device_inline bool isequal_float3(const float3 a, const float3 b)
{
#ifdef __KERNEL_OPENCL__
return all(a == b);
#else
return a == b;
#endif
}
ccl_device_inline bool isfinite3_safe(float3 v)
{
return isfinite_safe(v.x) && isfinite_safe(v.y) && isfinite_safe(v.z);
}
ccl_device_inline float3 ensure_finite3(float3 v)
{
if(!isfinite_safe(v.x)) v.x = 0.0f;
if(!isfinite_safe(v.y)) v.y = 0.0f;
if(!isfinite_safe(v.z)) v.z = 0.0f;
return v;
}
CCL_NAMESPACE_END
#endif /* __UTIL_MATH_FLOAT3_H__ */