forked from bartvdbraak/blender
b20a7e01d0
instead of sobol. So far one doesn't seem to be consistently better or worse than the other for the same number of samples but more testing is needed. The random number generator itself is slower than sobol for most number of samples, except 16, 64, 256, .. because they can be computed faster. This can probably be optimized, but we can do that when/if this actually turns out to be useful. Paper this implementation is based on: http://graphics.pixar.com/library/MultiJitteredSampling/ Also includes some refactoring of RNG code, fixing a Sobol correlation issue with the first BSDF and < 16 samples, skipping some unneeded RNG calls and using a simpler unit square to unit disk function.
265 lines
6.8 KiB
C
265 lines
6.8 KiB
C
/*
|
|
* Copyright 2011, Blender Foundation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include "kernel_jitter.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
typedef uint RNG;
|
|
|
|
#ifdef __SOBOL__
|
|
|
|
/* skip initial numbers that are not as well distributed, especially the
|
|
* first sequence is just 0 everywhere, which can be problematic for e.g.
|
|
* path termination */
|
|
#define SOBOL_SKIP 64
|
|
|
|
/* High Dimensional Sobol */
|
|
|
|
/* van der corput radical inverse */
|
|
__device uint van_der_corput(uint bits)
|
|
{
|
|
bits = (bits << 16) | (bits >> 16);
|
|
bits = ((bits & 0x00ff00ff) << 8) | ((bits & 0xff00ff00) >> 8);
|
|
bits = ((bits & 0x0f0f0f0f) << 4) | ((bits & 0xf0f0f0f0) >> 4);
|
|
bits = ((bits & 0x33333333) << 2) | ((bits & 0xcccccccc) >> 2);
|
|
bits = ((bits & 0x55555555) << 1) | ((bits & 0xaaaaaaaa) >> 1);
|
|
return bits;
|
|
}
|
|
|
|
/* sobol radical inverse */
|
|
__device uint sobol(uint i)
|
|
{
|
|
uint r = 0;
|
|
|
|
for(uint v = 1U << 31; i; i >>= 1, v ^= v >> 1)
|
|
if(i & 1)
|
|
r ^= v;
|
|
|
|
return r;
|
|
}
|
|
|
|
/* inverse of sobol radical inverse */
|
|
__device uint sobol_inverse(uint i)
|
|
{
|
|
const uint msb = 1U << 31;
|
|
uint r = 0;
|
|
|
|
for(uint v = 1; i; i <<= 1, v ^= v << 1)
|
|
if(i & msb)
|
|
r ^= v;
|
|
|
|
return r;
|
|
}
|
|
|
|
/* multidimensional sobol with generator matrices
|
|
* dimension 0 and 1 are equal to van_der_corput() and sobol() respectively */
|
|
__device uint sobol_dimension(KernelGlobals *kg, int index, int dimension)
|
|
{
|
|
uint result = 0;
|
|
uint i = index;
|
|
|
|
for(uint j = 0; i; i >>= 1, j++)
|
|
if(i & 1)
|
|
result ^= kernel_tex_fetch(__sobol_directions, 32*dimension + j);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* lookup index and x/y coordinate, assumes m is a power of two */
|
|
__device uint sobol_lookup(const uint m, const uint frame, const uint ex, const uint ey, uint *x, uint *y)
|
|
{
|
|
/* shift is constant per frame */
|
|
const uint shift = frame << (m << 1);
|
|
const uint sobol_shift = sobol(shift);
|
|
/* van der Corput is its own inverse */
|
|
const uint lower = van_der_corput(ex << (32 - m));
|
|
/* need to compensate for ey difference and shift */
|
|
const uint sobol_lower = sobol(lower);
|
|
const uint mask = ~-(1 << m) << (32 - m); /* only m upper bits */
|
|
const uint delta = ((ey << (32 - m)) ^ sobol_lower ^ sobol_shift) & mask;
|
|
/* only use m upper bits for the index (m is a power of two) */
|
|
const uint sobol_result = delta | (delta >> m);
|
|
const uint upper = sobol_inverse(sobol_result);
|
|
const uint index = shift | upper | lower;
|
|
*x = van_der_corput(index);
|
|
*y = sobol_shift ^ sobol_result ^ sobol_lower;
|
|
return index;
|
|
}
|
|
|
|
__device_inline float path_rng(KernelGlobals *kg, RNG rng, int sample, int dimension)
|
|
{
|
|
#ifdef __SOBOL_FULL_SCREEN__
|
|
uint result = sobol_dimension(kg, rng, dimension);
|
|
float r = (float)result * (1.0f/(float)0xFFFFFFFF);
|
|
return r;
|
|
#else
|
|
/* compute sobol sequence value using direction vectors */
|
|
uint result = sobol_dimension(kg, sample + SOBOL_SKIP, dimension);
|
|
float r = (float)result * (1.0f/(float)0xFFFFFFFF);
|
|
|
|
/* Cranly-Patterson rotation using rng seed */
|
|
float shift;
|
|
|
|
if(dimension & 1)
|
|
shift = (rng >> 16)*(1.0f/(float)0xFFFF);
|
|
else
|
|
shift = (rng & 0xFFFF)*(1.0f/(float)0xFFFF);
|
|
|
|
return r + shift - floorf(r + shift);
|
|
#endif
|
|
}
|
|
|
|
__device_inline float path_rng_1D(KernelGlobals *kg, RNG rng, int sample, int num_samples, int dimension)
|
|
{
|
|
#ifdef __CMJ__
|
|
if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ) {
|
|
/* correlated multi-jittered */
|
|
int p = rng + dimension;
|
|
return cmj_sample_1D(sample, num_samples, p);
|
|
}
|
|
#endif
|
|
|
|
/* sobol */
|
|
return path_rng(kg, rng, sample, dimension);
|
|
}
|
|
|
|
__device_inline float2 path_rng_2D(KernelGlobals *kg, RNG rng, int sample, int num_samples, int dimension)
|
|
{
|
|
#ifdef __CMJ__
|
|
if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ) {
|
|
/* correlated multi-jittered */
|
|
int p = rng + dimension;
|
|
return cmj_sample_2D(sample, num_samples, p);
|
|
}
|
|
#endif
|
|
|
|
/* sobol */
|
|
return make_float2(path_rng(kg, rng, sample, dimension),
|
|
path_rng(kg, rng, sample, dimension + 1));
|
|
}
|
|
|
|
__device_inline void path_rng_init(KernelGlobals *kg, __global uint *rng_state, int sample, int num_samples, RNG *rng, int x, int y, float *fx, float *fy)
|
|
{
|
|
#ifdef __SOBOL_FULL_SCREEN__
|
|
uint px, py;
|
|
uint bits = 16; /* limits us to 65536x65536 and 65536 samples */
|
|
uint size = 1 << bits;
|
|
uint frame = sample;
|
|
|
|
*rng = sobol_lookup(bits, frame, x, y, &px, &py);
|
|
|
|
*rng ^= kernel_data.integrator.seed;
|
|
|
|
if(sample == 0) {
|
|
*fx = 0.5f;
|
|
*fy = 0.5f;
|
|
}
|
|
else {
|
|
*fx = size * (float)px * (1.0f/(float)0xFFFFFFFF) - x;
|
|
*fy = size * (float)py * (1.0f/(float)0xFFFFFFFF) - y;
|
|
}
|
|
#else
|
|
*rng = *rng_state;
|
|
|
|
*rng ^= kernel_data.integrator.seed;
|
|
|
|
if(sample == 0) {
|
|
*fx = 0.5f;
|
|
*fy = 0.5f;
|
|
}
|
|
else {
|
|
float2 fxy = path_rng_2D(kg, *rng, sample, num_samples, PRNG_FILTER_U);
|
|
|
|
*fx = fxy.x;
|
|
*fy = fxy.y;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
__device void path_rng_end(KernelGlobals *kg, __global uint *rng_state, RNG rng)
|
|
{
|
|
/* nothing to do */
|
|
}
|
|
|
|
#else
|
|
|
|
/* Linear Congruential Generator */
|
|
|
|
__device float path_rng(KernelGlobals *kg, RNG& rng, int sample, int dimension)
|
|
{
|
|
/* implicit mod 2^32 */
|
|
rng = (1103515245*(rng) + 12345);
|
|
return (float)rng * (1.0f/(float)0xFFFFFFFF);
|
|
}
|
|
|
|
__device_inline float path_rng_1D(KernelGlobals *kg, RNG& rng, int sample, int num_samples, int dimension)
|
|
{
|
|
return path_rng(kg, rng, sample, dimension);
|
|
}
|
|
|
|
__device_inline float2 path_rng_2D(KernelGlobals *kg, RNG& rng, int sample, int num_samples, int dimension)
|
|
{
|
|
return make_float2(path_rng(kg, rng, sample, dimension),
|
|
path_rng(kg, rng, sample, dimension + 1));
|
|
}
|
|
|
|
__device void path_rng_init(KernelGlobals *kg, __global uint *rng_state, int sample, int num_samples, RNG *rng, int x, int y, float *fx, float *fy)
|
|
{
|
|
/* load state */
|
|
*rng = *rng_state;
|
|
|
|
*rng ^= kernel_data.integrator.seed;
|
|
|
|
if(sample == 0) {
|
|
*fx = 0.5f;
|
|
*fy = 0.5f;
|
|
}
|
|
else {
|
|
float2 fxy = path_rng_2D(kg, rng, sample, num_samples, PRNG_FILTER_U);
|
|
|
|
*fx = fxy.x;
|
|
*fy = fxy.y;
|
|
}
|
|
}
|
|
|
|
__device void path_rng_end(KernelGlobals *kg, __global uint *rng_state, RNG rng)
|
|
{
|
|
/* store state for next sample */
|
|
*rng_state = rng;
|
|
}
|
|
|
|
#endif
|
|
|
|
__device float lcg_step(uint *rng)
|
|
{
|
|
/* implicit mod 2^32 */
|
|
*rng = (1103515245*(*rng) + 12345);
|
|
return (float)*rng * (1.0f/(float)0xFFFFFFFF);
|
|
}
|
|
|
|
__device uint lcg_init(uint seed)
|
|
{
|
|
uint rng = seed;
|
|
lcg_step(&rng);
|
|
return rng;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|