blender/intern/bsp/test/BSP_GhostTest/BSP_GhostTest3D.cpp
Chris Want 5d0a207ecb Patch from GSR that a) fixes a whole bunch of GPL/BL license
blocks that were previously missed; and b) greatly increase my
ohloh stats!
2008-04-16 22:40:48 +00:00

656 lines
14 KiB
C++

/**
* $Id$
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/**
* $Id$
* Copyright (C) 2001 NaN Technologies B.V.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#if defined(WIN32) || defined(__APPLE__)
# ifdef WIN32
# include <windows.h>
# include <GL/gl.h>
# include <GL/glu.h>
# else // WIN32
# include <AGL/gl.h>
# endif // WIN32
#else // defined(WIN32) || defined(__APPLE__)
# include <GL/gl.h>
# include <GL/glu.h>
#endif // defined(WIN32) || defined(__APPLE__)
#include "BSP_GhostTest3D.h"
#include "BSP_MeshDrawer.h"
#include "GHOST_ISystem.h"
#include "GHOST_IWindow.h"
#include "MT_Quaternion.h"
#include "MT_Transform.h"
#include "CSG_BooleanOps.h"
#include <iostream>
int
EmptyInterpFunc(
void *d1,
void * d2,
void *dnew,
float epsilon
){
return 0;
}
using namespace std;
BSP_GhostTestApp3D::
BSP_GhostTestApp3D(
) :
m_window(NULL),
m_system(NULL),
m_finish_me_off(false),
m_current_object(0)
{
//nothing to do;
}
void
BSP_GhostTestApp3D::
SetMesh(
MEM_SmartPtr<BSP_TMesh> mesh
){
m_meshes.push_back(mesh);
BSP_RotationSetting rotation_setting;
BSP_TranslationSetting translation_setting;
rotation_setting.m_angle_x = MT_Scalar(0);
rotation_setting.m_angle_y = MT_Scalar(0);
rotation_setting.m_moving = false;
rotation_setting.x_old = 0;
rotation_setting.y_old = 0;
translation_setting.m_t_x = MT_Scalar(0);
translation_setting.m_t_y = MT_Scalar(0);
translation_setting.m_t_z = MT_Scalar(0);
translation_setting.m_moving = false;
translation_setting.x_old = 0;
translation_setting.y_old = 0;
m_rotation_settings.push_back(rotation_setting);
m_translation_settings.push_back(translation_setting);
m_render_modes.push_back(e_wireframe_shaded);
m_scale_settings.push_back(MT_Scalar(1));
}
void
BSP_GhostTestApp3D::
Swap(
int i
){
if (!m_rotation_settings[i].m_moving && !m_translation_settings[i].m_moving) {
swap(m_meshes[i],m_meshes.back());
swap(m_rotation_settings[i],m_rotation_settings.back());
swap(m_translation_settings[i],m_translation_settings.back());
swap(m_scale_settings[i],m_scale_settings.back());
swap(m_render_modes[i],m_render_modes.back());
}
}
MT_Transform
BSP_GhostTestApp3D::
GetTransform(
int i
){
MT_Quaternion q_ax(MT_Vector3(0,1,0),m_rotation_settings[i].m_angle_x);
MT_Quaternion q_ay(MT_Vector3(1,0,0),m_rotation_settings[i].m_angle_y);
MT_Point3 tr(
m_translation_settings[i].m_t_x,
m_translation_settings[i].m_t_y,
m_translation_settings[i].m_t_z
);
MT_Matrix3x3 rotx(q_ax);
MT_Matrix3x3 roty(q_ay);
MT_Matrix3x3 rot = rotx * roty;
MT_Transform trans(tr,rot);
MT_Transform scalet;
scalet.setIdentity();
scalet.scale(m_scale_settings[i],m_scale_settings[i],m_scale_settings[i]);
return trans * scalet;
}
void
BSP_GhostTestApp3D::
Operate(
int type
){
CSG_VertexIteratorDescriptor * vA = VertexIt_Construct(m_meshes[0],GetTransform(0));
CSG_FaceIteratorDescriptor * fA = FaceIt_Construct(m_meshes[0]);
CSG_VertexIteratorDescriptor * vB = VertexIt_Construct(m_meshes[1],GetTransform(1));
CSG_FaceIteratorDescriptor * fB = FaceIt_Construct(m_meshes[1]);
// describe properties.
CSG_MeshPropertyDescriptor props;
props.user_face_vertex_data_size = 0;
props.user_data_size = 0;
CSG_BooleanOperation * op = CSG_NewBooleanFunction();
props = CSG_DescibeOperands(op,props,props);
CSG_PerformBooleanOperation(
op,CSG_OperationType(type),
*fA,*vA,*fB,*vB,EmptyInterpFunc
);
CSG_FaceIteratorDescriptor out_f;
CSG_OutputFaceDescriptor(op,&out_f);
CSG_VertexIteratorDescriptor out_v;
CSG_OutputVertexDescriptor(op,&out_v);
MEM_SmartPtr<BSP_TMesh> new_mesh (BuildMesh(props,out_f,out_v));
// free stuff
CSG_FreeVertexDescriptor(&out_v);
CSG_FreeFaceDescriptor(&out_f);
CSG_FreeBooleanOperation(op);
op = NULL;
SetMesh(new_mesh);
}
void
BSP_GhostTestApp3D::
UpdateFrame(
){
if (m_window) {
GHOST_Rect v_rect;
m_window->getClientBounds(v_rect);
glViewport(0,0,v_rect.getWidth(),v_rect.getHeight());
}
}
MT_Vector3
BSP_GhostTestApp3D::
UnProject(
const MT_Vector3 & vec
) {
GLint viewport[4];
GLdouble mvmatrix[16],projmatrix[16];
glGetIntegerv(GL_VIEWPORT,viewport);
glGetDoublev(GL_MODELVIEW_MATRIX,mvmatrix);
glGetDoublev(GL_PROJECTION_MATRIX,projmatrix);
GLdouble realy = viewport[3] - vec.y() - 1;
GLdouble outx,outy,outz;
gluUnProject(vec.x(),realy,vec.z(),mvmatrix,projmatrix,viewport,&outx,&outy,&outz);
return MT_Vector3(outx,outy,outz);
}
bool
BSP_GhostTestApp3D::
InitApp(
){
// create a system and window with opengl
// rendering context.
GHOST_TSuccess success = GHOST_ISystem::createSystem();
if (success == GHOST_kFailure) return false;
m_system = GHOST_ISystem::getSystem();
if (m_system == NULL) return false;
m_system->addEventConsumer(this);
m_window = m_system->createWindow(
"GHOST crud3D!",
100,100,512,512,GHOST_kWindowStateNormal,
GHOST_kDrawingContextTypeOpenGL,false
);
if (
m_window == NULL
) {
m_system = NULL;
GHOST_ISystem::disposeSystem();
return false;
}
// make an opengl frustum for this wind
MT_Vector3 min,max;
min = m_meshes[0]->m_min;
max = m_meshes[0]->m_max;
InitOpenGl(min,max);
return true;
}
void
BSP_GhostTestApp3D::
Run(
){
if (m_system == NULL) {
return;
}
while (!m_finish_me_off) {
m_system->processEvents(true);
m_system->dispatchEvents();
};
}
bool
BSP_GhostTestApp3D::
processEvent(
GHOST_IEvent* event
){
bool handled = false;
switch(event->getType()) {
case GHOST_kEventWindowSize:
case GHOST_kEventWindowActivate:
UpdateFrame();
case GHOST_kEventWindowUpdate:
DrawPolies();
handled = true;
break;
case GHOST_kEventButtonDown:
{
int x,y;
m_system->getCursorPosition(x,y);
int wx,wy;
m_window->screenToClient(x,y,wx,wy);
GHOST_TButtonMask button =
static_cast<GHOST_TEventButtonData *>(event->getData())->button;
if (button == GHOST_kButtonMaskLeft) {
m_rotation_settings[m_current_object].m_moving = true;
m_rotation_settings[m_current_object].x_old = x;
m_rotation_settings[m_current_object].y_old = y;
} else
if (button == GHOST_kButtonMaskRight) {
m_translation_settings[m_current_object].m_moving = true;
m_translation_settings[m_current_object].x_old = x;
m_translation_settings[m_current_object].y_old = y;
} else
m_window->invalidate();
handled = true;
break;
}
case GHOST_kEventButtonUp:
{
GHOST_TButtonMask button =
static_cast<GHOST_TEventButtonData *>(event->getData())->button;
if (button == GHOST_kButtonMaskLeft) {
m_rotation_settings[m_current_object].m_moving = false;
m_rotation_settings[m_current_object].x_old = 0;
m_rotation_settings[m_current_object].y_old = 0;
} else
if (button == GHOST_kButtonMaskRight) {
m_translation_settings[m_current_object].m_moving = false;
m_translation_settings[m_current_object].x_old;
m_translation_settings[m_current_object].y_old;
}
m_window->invalidate();
handled = true;
break;
}
case GHOST_kEventCursorMove:
{
int x,y;
m_system->getCursorPosition(x,y);
int wx,wy;
m_window->screenToClient(x,y,wx,wy);
if (m_rotation_settings[m_current_object].m_moving) {
m_rotation_settings[m_current_object].m_angle_x = MT_Scalar(wx)/20;
m_rotation_settings[m_current_object].x_old = wx;
m_rotation_settings[m_current_object].m_angle_y = MT_Scalar(wy)/20;
m_rotation_settings[m_current_object].y_old = wy;
m_window->invalidate();
}
if (m_translation_settings[m_current_object].m_moving) {
// project current objects bounding box center into screen space.
// unproject mouse point into object space using z-value from
// projected bounding box center.
GHOST_Rect bounds;
m_window->getClientBounds(bounds);
int w_h = bounds.getHeight();
y = w_h - wy;
x = wx;
double mvmatrix[16];
double projmatrix[16];
GLint viewport[4];
double px, py, pz,sz;
/* Get the matrices needed for gluUnProject */
glGetIntegerv(GL_VIEWPORT, viewport);
glGetDoublev(GL_MODELVIEW_MATRIX, mvmatrix);
glGetDoublev(GL_PROJECTION_MATRIX, projmatrix);
// work out the position of the end effector in screen space
GLdouble ex,ey,ez;
ex = m_translation_settings[m_current_object].m_t_x;
ey = m_translation_settings[m_current_object].m_t_y;
ez = m_translation_settings[m_current_object].m_t_z;
gluProject(ex, ey, ez, mvmatrix, projmatrix, viewport, &px, &py, &sz);
gluUnProject((GLdouble) x, (GLdouble) y, sz, mvmatrix, projmatrix, viewport, &px, &py, &pz);
m_translation_settings[m_current_object].m_t_x = px;
m_translation_settings[m_current_object].m_t_y = py;
m_translation_settings[m_current_object].m_t_z = pz;
m_window->invalidate();
}
handled = true;
break;
}
case GHOST_kEventKeyDown :
{
GHOST_TEventKeyData *kd =
static_cast<GHOST_TEventKeyData *>(event->getData());
switch(kd->key) {
case GHOST_kKeyI:
{
// now intersect meshes.
Operate(e_csg_intersection);
handled = true;
m_window->invalidate();
break;
}
case GHOST_kKeyU:
{
Operate(e_csg_union);
handled = true;
m_window->invalidate();
break;
}
case GHOST_kKeyD:
{
Operate(e_csg_difference);
handled = true;
m_window->invalidate();
break;
}
case GHOST_kKeyA:
{
m_scale_settings[m_current_object] *= 1.1;
handled = true;
m_window->invalidate();
break;
}
case GHOST_kKeyZ:
{
m_scale_settings[m_current_object] *= 0.8;
handled = true;
m_window->invalidate();
break;
}
case GHOST_kKeyR:
m_render_modes[m_current_object]++;
if (m_render_modes[m_current_object] > e_last_render_mode) {
m_render_modes[m_current_object] = e_first_render_mode;
}
handled = true;
m_window->invalidate();
break;
case GHOST_kKeyB:
handled = true;
m_window->invalidate();
break;
case GHOST_kKeyQ:
m_finish_me_off = true;
handled = true;
break;
case GHOST_kKeyS:
Swap(m_current_object);
m_window->invalidate();
handled = true;
break;
case GHOST_kKeySpace:
// increment the current object only if the object is not being
// manipulated.
if (! (m_rotation_settings[m_current_object].m_moving || m_translation_settings[m_current_object].m_moving)) {
m_current_object ++;
if (m_current_object >= m_meshes.size()) {
m_current_object = 0;
}
}
m_window->invalidate();
handled = true;
break;
default :
break;
}
}
default :
break;
}
return handled;
};
BSP_GhostTestApp3D::
~BSP_GhostTestApp3D(
){
if (m_window) {
m_system->disposeWindow(m_window);
m_window = NULL;
GHOST_ISystem::disposeSystem();
m_system = NULL;
}
};
void
BSP_GhostTestApp3D::
DrawPolies(
){
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
for (int i = 0; i < m_meshes.size(); ++i) {
MT_Transform trans = GetTransform(i);
float opengl_mat[16];
trans.getValue(opengl_mat);
glPushMatrix();
glMultMatrixf(opengl_mat);
MT_Vector3 color(1.0,1.0,1.0);
if (i == m_current_object) {
color = MT_Vector3(1.0,0,0);
}
BSP_MeshDrawer::DrawMesh(m_meshes[i].Ref(),m_render_modes[i]);
glPopMatrix();
}
m_window->swapBuffers();
}
void
BSP_GhostTestApp3D::
InitOpenGl(
const MT_Vector3 &min,
const MT_Vector3 &max
){
GLfloat light_diffuse0[] = {1.0, 0.0, 0.0, 0.5}; /* Red diffuse light. */
GLfloat light_position0[] = {1.0, 1.0, 1.0, 0.0}; /* Infinite light location. */
GLfloat light_diffuse1[] = {1.0, 1.0, 1.0, 0.5}; /* Red diffuse light. */
GLfloat light_position1[] = {1.0, 0, 0, 0.0}; /* Infinite light location. */
/* Enable a single OpenGL light. */
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse0);
glLightfv(GL_LIGHT0, GL_POSITION, light_position0);
glLightfv(GL_LIGHT1, GL_DIFFUSE, light_diffuse1);
glLightfv(GL_LIGHT1, GL_POSITION, light_position1);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHT1);
glEnable(GL_LIGHTING);
// make sure there is no back face culling.
// glDisable(GL_CULL_FACE);
// use two sided lighting model
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE,GL_TRUE);
/* Use depth buffering for hidden surface elimination. */
glEnable(GL_DEPTH_TEST);
/* Setup the view of the cube. */
glMatrixMode(GL_PROJECTION);
// center of the box + 3* depth of box
MT_Vector3 center = (min + max) * 0.5;
MT_Vector3 diag = max - min;
float depth = diag.length();
float distance = 5;
gluPerspective(
/* field of view in degree */ 40.0,
/* aspect ratio */ 1.0,
/* Z near */ 1.0,
/* Z far */ distance * depth * 2
);
glMatrixMode(GL_MODELVIEW);
gluLookAt(
center.x(), center.y(), center.z() + distance*depth, //eye
center.x(), center.y(), center.z(), //center
0.0, 1.0, 0.
); /* up is in positive Y direction */
}