forked from bartvdbraak/blender
feb4f51103
Only windows projectfiles for now. Will ask Hans to get unix makefiles done.
187 lines
4.9 KiB
C++
187 lines
4.9 KiB
C++
/*
|
|
* Copyright (c) 2005 Erwin Coumans http://www.erwincoumans.com
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies.
|
|
* Erwin Coumans makes no representations about the suitability
|
|
* of this software for any purpose.
|
|
* It is provided "as is" without express or implied warranty.
|
|
*/
|
|
|
|
#include "GjkPairDetector.h"
|
|
#include "CollisionShapes/ConvexShape.h"
|
|
#include "NarrowPhaseCollision/SimplexSolverInterface.h"
|
|
#include "NarrowPhaseCollision/ConvexPenetrationDepthSolver.h"
|
|
|
|
static const SimdScalar rel_error = SimdScalar(1.0e-3);
|
|
SimdScalar rel_error2 = rel_error * rel_error;
|
|
float maxdist2 = 1.e30f;
|
|
|
|
|
|
|
|
GjkPairDetector::GjkPairDetector(ConvexShape* objectA,ConvexShape* objectB,SimplexSolverInterface* simplexSolver,ConvexPenetrationDepthSolver* penetrationDepthSolver)
|
|
:m_cachedSeparatingAxis(0.f,0.f,1.f),
|
|
m_penetrationDepthSolver(penetrationDepthSolver),
|
|
m_simplexSolver(simplexSolver),
|
|
m_minkowskiA(objectA),
|
|
m_minkowskiB(objectB)
|
|
{
|
|
}
|
|
|
|
void GjkPairDetector::GetClosestPoints(const ClosestPointInput& input,Result& output)
|
|
{
|
|
SimdScalar distance;
|
|
SimdVector3 normalInB(0.f,0.f,0.f);
|
|
SimdVector3 pointOnA,pointOnB;
|
|
|
|
float marginA = m_minkowskiA->GetMargin();
|
|
float marginB = m_minkowskiB->GetMargin();
|
|
|
|
bool isValid = false;
|
|
bool checkSimplex = false;
|
|
bool checkPenetration = true;
|
|
|
|
{
|
|
SimdScalar squaredDistance = SIMD_INFINITY;
|
|
SimdScalar delta = 0.f;
|
|
|
|
SimdScalar margin = marginA + marginB;
|
|
|
|
|
|
|
|
m_simplexSolver->reset();
|
|
|
|
while (true)
|
|
{
|
|
|
|
SimdVector3 seperatingAxisInA = (-m_cachedSeparatingAxis)* input.m_transformA.getBasis();
|
|
SimdVector3 seperatingAxisInB = m_cachedSeparatingAxis* input.m_transformB.getBasis();
|
|
|
|
SimdVector3 pInA = m_minkowskiA->LocalGetSupportingVertexWithoutMargin(seperatingAxisInA);
|
|
SimdVector3 qInB = m_minkowskiB->LocalGetSupportingVertexWithoutMargin(seperatingAxisInB);
|
|
SimdPoint3 pWorld = input.m_transformA(pInA);
|
|
SimdPoint3 qWorld = input.m_transformB(qInB);
|
|
|
|
SimdVector3 w = pWorld - qWorld;
|
|
delta = m_cachedSeparatingAxis.dot(w);
|
|
|
|
// potential exit, they don't overlap
|
|
if ((delta > SimdScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared))
|
|
{
|
|
checkPenetration = false;
|
|
break;
|
|
}
|
|
|
|
//exit 0: the new point is already in the simplex, or we didn't come any closer
|
|
if (m_simplexSolver->inSimplex(w))
|
|
{
|
|
checkSimplex = true;
|
|
break;
|
|
}
|
|
// are we getting any closer ?
|
|
if (squaredDistance - delta <= squaredDistance * rel_error2)
|
|
{
|
|
checkSimplex = true;
|
|
break;
|
|
}
|
|
//add current vertex to simplex
|
|
m_simplexSolver->addVertex(w, pWorld, qWorld);
|
|
|
|
//calculate the closest point to the origin (update vector v)
|
|
if (!m_simplexSolver->closest(m_cachedSeparatingAxis))
|
|
{
|
|
checkSimplex = true;
|
|
break;
|
|
}
|
|
|
|
SimdScalar previousSquaredDistance = squaredDistance;
|
|
squaredDistance = m_cachedSeparatingAxis.length2();
|
|
|
|
//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
|
|
|
|
//are we getting any closer ?
|
|
if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance)
|
|
{
|
|
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
|
checkSimplex = true;
|
|
break;
|
|
}
|
|
bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());
|
|
|
|
if (!check)
|
|
{
|
|
//do we need this backup_closest here ?
|
|
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (checkSimplex)
|
|
{
|
|
m_simplexSolver->compute_points(pointOnA, pointOnB);
|
|
normalInB = pointOnA-pointOnB;
|
|
float lenSqr = m_cachedSeparatingAxis.length2();
|
|
//valid normal
|
|
if (lenSqr > SIMD_EPSILON)
|
|
{
|
|
float rlen = 1.f / sqrtf(lenSqr );
|
|
normalInB *= rlen; //normalize
|
|
SimdScalar s = sqrtf(squaredDistance);
|
|
ASSERT(s > SimdScalar(0.0));
|
|
pointOnA -= m_cachedSeparatingAxis * (marginA / s);
|
|
pointOnB += m_cachedSeparatingAxis * (marginB / s);
|
|
distance = ((1.f/rlen) - margin);
|
|
isValid = true;
|
|
}
|
|
}
|
|
|
|
if (checkPenetration && !isValid)
|
|
{
|
|
//penetration case
|
|
m_minkowskiA->SetMargin(marginA);
|
|
m_minkowskiB->SetMargin(marginB);
|
|
|
|
//if there is no way to handle penetrations, bail out
|
|
if (m_penetrationDepthSolver)
|
|
{
|
|
// Penetration depth case.
|
|
isValid = m_penetrationDepthSolver->CalcPenDepth(
|
|
*m_simplexSolver,
|
|
m_minkowskiA,m_minkowskiB,
|
|
input.m_transformA,input.m_transformB,
|
|
m_cachedSeparatingAxis, pointOnA, pointOnB);
|
|
|
|
if (isValid)
|
|
{
|
|
normalInB = pointOnB-pointOnA;
|
|
float lenSqr = normalInB.length2();
|
|
if (lenSqr > SIMD_EPSILON)
|
|
{
|
|
normalInB /= sqrtf(lenSqr);
|
|
distance = -(pointOnA-pointOnB).length();
|
|
} else
|
|
{
|
|
isValid = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isValid)
|
|
{
|
|
output.AddContactPoint(
|
|
normalInB,
|
|
pointOnB,
|
|
distance);
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|