forked from bartvdbraak/blender
177 lines
5.8 KiB
C++
177 lines
5.8 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
|
|
#include "HingeConstraint.h"
|
|
#include "Dynamics/RigidBody.h"
|
|
#include "Dynamics/MassProps.h"
|
|
#include "SimdTransformUtil.h"
|
|
|
|
|
|
HingeConstraint::HingeConstraint()
|
|
{
|
|
}
|
|
|
|
HingeConstraint::HingeConstraint(RigidBody& rbA,RigidBody& rbB, const SimdVector3& pivotInA,const SimdVector3& pivotInB,
|
|
SimdVector3& axisInA,SimdVector3& axisInB)
|
|
:TypedConstraint(rbA,rbB),m_pivotInA(pivotInA),m_pivotInB(pivotInB),
|
|
m_axisInA(axisInA),
|
|
m_axisInB(axisInB),
|
|
m_angularOnly(false)
|
|
{
|
|
|
|
}
|
|
|
|
|
|
HingeConstraint::HingeConstraint(RigidBody& rbA,const SimdVector3& pivotInA,SimdVector3& axisInA)
|
|
:TypedConstraint(rbA),m_pivotInA(pivotInA),m_pivotInB(rbA.getCenterOfMassTransform()(pivotInA)),
|
|
m_axisInA(axisInA),
|
|
//fixed axis in worldspace
|
|
m_axisInB(rbA.getCenterOfMassTransform().getBasis() * -axisInA),
|
|
m_angularOnly(false)
|
|
{
|
|
|
|
}
|
|
|
|
void HingeConstraint::BuildJacobian()
|
|
{
|
|
SimdVector3 normal(0,0,0);
|
|
|
|
if (!m_angularOnly)
|
|
{
|
|
for (int i=0;i<3;i++)
|
|
{
|
|
normal[i] = 1;
|
|
new (&m_jac[i]) JacobianEntry(
|
|
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
|
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
|
m_rbA.getCenterOfMassTransform()*m_pivotInA - m_rbA.getCenterOfMassPosition(),
|
|
m_rbB.getCenterOfMassTransform()*m_pivotInB - m_rbB.getCenterOfMassPosition(),
|
|
normal,
|
|
m_rbA.getInvInertiaDiagLocal(),
|
|
m_rbA.getInvMass(),
|
|
m_rbB.getInvInertiaDiagLocal(),
|
|
m_rbB.getInvMass());
|
|
normal[i] = 0;
|
|
}
|
|
}
|
|
|
|
//calculate two perpendicular jointAxis, orthogonal to hingeAxis
|
|
//these two jointAxis require equal angular velocities for both bodies
|
|
|
|
//this is ununsed for now, it's a todo
|
|
SimdVector3 axisWorldA = GetRigidBodyA().getCenterOfMassTransform().getBasis() * m_axisInA;
|
|
SimdVector3 jointAxis0;
|
|
SimdVector3 jointAxis1;
|
|
SimdPlaneSpace1(axisWorldA,jointAxis0,jointAxis1);
|
|
|
|
new (&m_jacAng[0]) JacobianEntry(jointAxis0,
|
|
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
|
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
|
m_rbA.getInvInertiaDiagLocal(),
|
|
m_rbB.getInvInertiaDiagLocal());
|
|
|
|
new (&m_jacAng[1]) JacobianEntry(jointAxis1,
|
|
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
|
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
|
m_rbA.getInvInertiaDiagLocal(),
|
|
m_rbB.getInvInertiaDiagLocal());
|
|
|
|
|
|
}
|
|
|
|
void HingeConstraint::SolveConstraint(SimdScalar timeStep)
|
|
{
|
|
|
|
SimdVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_pivotInA;
|
|
SimdVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_pivotInB;
|
|
|
|
SimdVector3 normal(0,0,0);
|
|
SimdScalar tau = 0.3f;
|
|
SimdScalar damping = 1.f;
|
|
|
|
if (!m_angularOnly)
|
|
{
|
|
for (int i=0;i<3;i++)
|
|
{
|
|
normal[i] = 1;
|
|
SimdScalar jacDiagABInv = 1.f / m_jac[i].getDiagonal();
|
|
|
|
SimdVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
|
|
SimdVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
|
|
|
|
SimdVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1);
|
|
SimdVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2);
|
|
SimdVector3 vel = vel1 - vel2;
|
|
SimdScalar rel_vel;
|
|
rel_vel = normal.dot(vel);
|
|
//positional error (zeroth order error)
|
|
SimdScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
|
|
SimdScalar impulse = depth*tau/timeStep * jacDiagABInv - damping * rel_vel * jacDiagABInv * damping;
|
|
|
|
SimdVector3 impulse_vector = normal * impulse;
|
|
m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition());
|
|
m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition());
|
|
|
|
normal[i] = 0;
|
|
}
|
|
}
|
|
|
|
///solve angular part
|
|
|
|
// get axes in world space
|
|
SimdVector3 axisA = GetRigidBodyA().getCenterOfMassTransform().getBasis() * m_axisInA;
|
|
SimdVector3 axisB = GetRigidBodyB().getCenterOfMassTransform().getBasis() * m_axisInB;
|
|
|
|
const SimdVector3& angVelA = GetRigidBodyA().getAngularVelocity();
|
|
const SimdVector3& angVelB = GetRigidBodyB().getAngularVelocity();
|
|
SimdVector3 angA = angVelA - axisA * axisA.dot(angVelA);
|
|
SimdVector3 angB = angVelB - axisB * axisB.dot(angVelB);
|
|
SimdVector3 velrel = angA-angB;
|
|
|
|
//solve angular velocity correction
|
|
float relaxation = 1.f;
|
|
float len = velrel.length();
|
|
if (len > 0.00001f)
|
|
{
|
|
SimdVector3 normal = velrel.normalized();
|
|
float denom = GetRigidBodyA().ComputeAngularImpulseDenominator(normal) +
|
|
GetRigidBodyB().ComputeAngularImpulseDenominator(normal);
|
|
// scale for mass and relaxation
|
|
velrel *= (1.f/denom) * 0.9;
|
|
}
|
|
|
|
//solve angular positional correction
|
|
SimdVector3 angularError = -axisA.cross(axisB) *(1.f/timeStep);
|
|
float len2 = angularError.length();
|
|
if (len2>0.00001f)
|
|
{
|
|
SimdVector3 normal2 = angularError.normalized();
|
|
float denom2 = GetRigidBodyA().ComputeAngularImpulseDenominator(normal2) +
|
|
GetRigidBodyB().ComputeAngularImpulseDenominator(normal2);
|
|
angularError *= (1.f/denom2) * relaxation;
|
|
}
|
|
|
|
m_rbA.applyTorqueImpulse(-velrel+angularError);
|
|
m_rbB.applyTorqueImpulse(velrel-angularError);
|
|
|
|
}
|
|
|
|
void HingeConstraint::UpdateRHS(SimdScalar timeStep)
|
|
{
|
|
|
|
}
|
|
|