blender/source/gameengine/Ketsji/KX_ConstraintActuator.cpp
Benoit Bolsee 8e1cf42dbd BGE patch: local/global flag to distance contraint actuator.
Previously the distance constraint actuator was always working
in local axis. The local flag allows to cast the ray along a
world axis (when the flag is not selected). 
The N flag works differently in this case: only the object 
orientation is changed to be parallel to the normal at the hit
point. 

The linear velocity is now changed so that the speed along the 
ray axis is null. This eliminates the need to compensate the 
gravity when casting along the Z axis.
2008-09-26 18:03:14 +00:00

828 lines
26 KiB
C++

/**
* Apply a constraint to a position or rotation value
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "SCA_IActuator.h"
#include "KX_ConstraintActuator.h"
#include "SCA_IObject.h"
#include "MT_Point3.h"
#include "MT_Matrix3x3.h"
#include "KX_GameObject.h"
#include "KX_RayCast.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/* ------------------------------------------------------------------------- */
/* Native functions */
/* ------------------------------------------------------------------------- */
KX_ConstraintActuator::KX_ConstraintActuator(SCA_IObject *gameobj,
int posDampTime,
int rotDampTime,
float minBound,
float maxBound,
float refDir[3],
int locrotxyz,
int time,
int option,
char *property,
PyTypeObject* T) :
m_refDirection(refDir),
m_currentTime(0),
SCA_IActuator(gameobj, T)
{
m_posDampTime = posDampTime;
m_rotDampTime = rotDampTime;
m_locrot = locrotxyz;
m_option = option;
m_activeTime = time;
if (property) {
strncpy(m_property, property, sizeof(m_property));
m_property[sizeof(m_property)-1] = 0;
} else {
m_property[0] = 0;
}
/* The units of bounds are determined by the type of constraint. To */
/* make the constraint application easier and more transparent later on, */
/* I think converting the bounds to the applicable domain makes more */
/* sense. */
switch (m_locrot) {
case KX_ACT_CONSTRAINT_ORIX:
case KX_ACT_CONSTRAINT_ORIY:
case KX_ACT_CONSTRAINT_ORIZ:
{
MT_Scalar len = m_refDirection.length();
if (MT_fuzzyZero(len)) {
// missing a valid direction
std::cout << "WARNING: Constraint actuator " << GetName() << ": There is no valid reference direction!" << std::endl;
m_locrot = KX_ACT_CONSTRAINT_NODEF;
} else {
m_refDirection /= len;
}
m_minimumBound = cos(minBound);
m_maximumBound = cos(maxBound);
m_minimumSine = sin(minBound);
m_maximumSine = sin(maxBound);
}
break;
default:
m_minimumBound = minBound;
m_maximumBound = maxBound;
m_minimumSine = 0.f;
m_maximumSine = 0.f;
break;
}
} /* End of constructor */
KX_ConstraintActuator::~KX_ConstraintActuator()
{
// there's nothing to be done here, really....
} /* end of destructor */
bool KX_ConstraintActuator::RayHit(KX_ClientObjectInfo* client, KX_RayCast* result, void * const data)
{
KX_GameObject* hitKXObj = client->m_gameobject;
bool bFound = false;
if (m_property[0] == 0)
{
bFound = true;
}
else
{
if (m_option & KX_ACT_CONSTRAINT_MATERIAL)
{
if (client->m_auxilary_info)
{
bFound = !strcmp(m_property, ((char*)client->m_auxilary_info));
}
}
else
{
bFound = hitKXObj->GetProperty(m_property) != NULL;
}
}
// update the hit status
result->m_hitFound = bFound;
// stop looking
return true;
}
/* this function is used to pre-filter the object before casting the ray on them.
This is useful for "X-Ray" option when we want to see "through" unwanted object.
*/
bool KX_ConstraintActuator::NeedRayCast(KX_ClientObjectInfo* client)
{
if (client->m_type > KX_ClientObjectInfo::ACTOR)
{
// Unknown type of object, skip it.
// Should not occur as the sensor objects are filtered in RayTest()
printf("Invalid client type %d found in ray casting\n", client->m_type);
return false;
}
// no X-Ray function yet
return true;
}
bool KX_ConstraintActuator::Update(double curtime, bool frame)
{
bool result = false;
bool bNegativeEvent = IsNegativeEvent();
RemoveAllEvents();
if (!bNegativeEvent) {
/* Constraint clamps the values to the specified range, with a sort of */
/* low-pass filtered time response, if the damp time is unequal to 0. */
/* Having to retrieve location/rotation and setting it afterwards may not */
/* be efficient enough... Somthing to look at later. */
KX_GameObject *obj = (KX_GameObject*) GetParent();
MT_Point3 position = obj->NodeGetWorldPosition();
MT_Point3 newposition;
MT_Vector3 normal, direction, refDirection;
MT_Matrix3x3 rotation = obj->NodeGetWorldOrientation();
MT_Scalar filter, newdistance, cosangle;
int axis, sign;
if (m_posDampTime) {
filter = m_posDampTime/(1.0+m_posDampTime);
} else {
filter = 0.0;
}
switch (m_locrot) {
case KX_ACT_CONSTRAINT_ORIX:
case KX_ACT_CONSTRAINT_ORIY:
case KX_ACT_CONSTRAINT_ORIZ:
switch (m_locrot) {
case KX_ACT_CONSTRAINT_ORIX:
direction[0] = rotation[0][0];
direction[1] = rotation[1][0];
direction[2] = rotation[2][0];
axis = 0;
break;
case KX_ACT_CONSTRAINT_ORIY:
direction[0] = rotation[0][1];
direction[1] = rotation[1][1];
direction[2] = rotation[2][1];
axis = 1;
break;
default:
direction[0] = rotation[0][2];
direction[1] = rotation[1][2];
direction[2] = rotation[2][2];
axis = 2;
break;
}
if ((m_maximumBound < (1.0f-FLT_EPSILON)) || (m_minimumBound < (1.0f-FLT_EPSILON))) {
// reference direction needs to be evaluated
// 1. get the cosine between current direction and target
cosangle = direction.dot(m_refDirection);
if (cosangle >= (m_maximumBound-FLT_EPSILON) && cosangle <= (m_minimumBound+FLT_EPSILON)) {
// no change to do
result = true;
goto CHECK_TIME;
}
// 2. define a new reference direction
// compute local axis with reference direction as X and
// Y in direction X refDirection plane
MT_Vector3 zaxis = m_refDirection.cross(direction);
if (MT_fuzzyZero2(zaxis.length2())) {
// direction and refDirection are identical,
// choose any other direction to define plane
if (direction[0] < 0.9999)
zaxis = m_refDirection.cross(MT_Vector3(1.0,0.0,0.0));
else
zaxis = m_refDirection.cross(MT_Vector3(0.0,1.0,0.0));
}
MT_Vector3 yaxis = zaxis.cross(m_refDirection);
yaxis.normalize();
if (cosangle > m_minimumBound) {
// angle is too close to reference direction,
// choose a new reference that is exactly at minimum angle
refDirection = m_minimumBound * m_refDirection + m_minimumSine * yaxis;
} else {
// angle is too large, choose new reference direction at maximum angle
refDirection = m_maximumBound * m_refDirection + m_maximumSine * yaxis;
}
} else {
refDirection = m_refDirection;
}
// apply damping on the direction
direction = filter*direction + (1.0-filter)*refDirection;
obj->AlignAxisToVect(direction, axis);
result = true;
goto CHECK_TIME;
case KX_ACT_CONSTRAINT_DIRPX:
case KX_ACT_CONSTRAINT_DIRPY:
case KX_ACT_CONSTRAINT_DIRPZ:
case KX_ACT_CONSTRAINT_DIRNX:
case KX_ACT_CONSTRAINT_DIRNY:
case KX_ACT_CONSTRAINT_DIRNZ:
switch (m_locrot) {
case KX_ACT_CONSTRAINT_DIRPX:
normal[0] = rotation[0][0];
normal[1] = rotation[1][0];
normal[2] = rotation[2][0];
axis = 0; // axis according to KX_GameObject::AlignAxisToVect()
sign = 0; // X axis will be parrallel to direction of ray
break;
case KX_ACT_CONSTRAINT_DIRPY:
normal[0] = rotation[0][1];
normal[1] = rotation[1][1];
normal[2] = rotation[2][1];
axis = 1;
sign = 0;
break;
case KX_ACT_CONSTRAINT_DIRPZ:
normal[0] = rotation[0][2];
normal[1] = rotation[1][2];
normal[2] = rotation[2][2];
axis = 2;
sign = 0;
break;
case KX_ACT_CONSTRAINT_DIRNX:
normal[0] = -rotation[0][0];
normal[1] = -rotation[1][0];
normal[2] = -rotation[2][0];
axis = 0;
sign = 1;
break;
case KX_ACT_CONSTRAINT_DIRNY:
normal[0] = -rotation[0][1];
normal[1] = -rotation[1][1];
normal[2] = -rotation[2][1];
axis = 1;
sign = 1;
break;
case KX_ACT_CONSTRAINT_DIRNZ:
normal[0] = -rotation[0][2];
normal[1] = -rotation[1][2];
normal[2] = -rotation[2][2];
axis = 2;
sign = 1;
break;
}
normal.normalize();
if (m_option & KX_ACT_CONSTRAINT_LOCAL) {
// direction of the ray is along the local axis
direction = normal;
} else {
switch (m_locrot) {
case KX_ACT_CONSTRAINT_DIRPX:
direction = MT_Vector3(1.0,0.0,0.0);
break;
case KX_ACT_CONSTRAINT_DIRPY:
direction = MT_Vector3(0.0,1.0,0.0);
break;
case KX_ACT_CONSTRAINT_DIRPZ:
direction = MT_Vector3(0.0,0.0,1.0);
break;
case KX_ACT_CONSTRAINT_DIRNX:
direction = MT_Vector3(-1.0,0.0,0.0);
break;
case KX_ACT_CONSTRAINT_DIRNY:
direction = MT_Vector3(0.0,-1.0,0.0);
break;
case KX_ACT_CONSTRAINT_DIRNZ:
direction = MT_Vector3(0.0,0.0,-1.0);
break;
}
}
{
MT_Point3 topoint = position + (m_maximumBound) * direction;
PHY_IPhysicsEnvironment* pe = obj->GetPhysicsEnvironment();
KX_IPhysicsController *spc = obj->GetPhysicsController();
if (!pe) {
std::cout << "WARNING: Constraint actuator " << GetName() << ": There is no physics environment!" << std::endl;
goto CHECK_TIME;
}
if (!spc) {
// the object is not physical, we probably want to avoid hitting its own parent
KX_GameObject *parent = obj->GetParent();
if (parent) {
spc = parent->GetPhysicsController();
parent->Release();
}
}
KX_RayCast::Callback<KX_ConstraintActuator> callback(this,spc);
result = KX_RayCast::RayTest(pe, position, topoint, callback);
if (result) {
MT_Vector3 newnormal = callback.m_hitNormal;
// compute new position & orientation
if ((m_option & (KX_ACT_CONSTRAINT_NORMAL|KX_ACT_CONSTRAINT_DISTANCE)) == 0) {
// if none option is set, the actuator does nothing but detect ray
// (works like a sensor)
goto CHECK_TIME;
}
if (m_option & KX_ACT_CONSTRAINT_NORMAL) {
MT_Scalar rotFilter;
// apply damping on the direction
if (m_rotDampTime) {
rotFilter = m_rotDampTime/(1.0+m_rotDampTime);
} else {
rotFilter = filter;
}
newnormal = rotFilter*normal - (1.0-rotFilter)*newnormal;
obj->AlignAxisToVect((sign)?-newnormal:newnormal, axis);
if (m_option & KX_ACT_CONSTRAINT_LOCAL) {
direction = newnormal;
direction.normalize();
}
}
if (m_option & KX_ACT_CONSTRAINT_DISTANCE) {
if (m_posDampTime) {
newdistance = filter*(position-callback.m_hitPoint).length()+(1.0-filter)*m_minimumBound;
} else {
newdistance = m_minimumBound;
}
// logically we should cancel the speed along the ray direction as we set the
// position along that axis
spc = obj->GetPhysicsController();
if (spc) {
MT_Vector3 linV = spc->GetLinearVelocity();
// cancel the projection along the ray direction
MT_Scalar fallspeed = linV.dot(direction);
if (!MT_fuzzyZero(fallspeed))
spc->SetLinearVelocity(linV-fallspeed*direction,false);
}
} else {
newdistance = (position-callback.m_hitPoint).length();
}
newposition = callback.m_hitPoint-newdistance*direction;
} else if (m_option & KX_ACT_CONSTRAINT_PERMANENT) {
// no contact but still keep running
result = true;
goto CHECK_TIME;
}
}
break;
case KX_ACT_CONSTRAINT_LOCX:
case KX_ACT_CONSTRAINT_LOCY:
case KX_ACT_CONSTRAINT_LOCZ:
newposition = position = obj->GetSGNode()->GetLocalPosition();
switch (m_locrot) {
case KX_ACT_CONSTRAINT_LOCX:
Clamp(newposition[0], m_minimumBound, m_maximumBound);
break;
case KX_ACT_CONSTRAINT_LOCY:
Clamp(newposition[1], m_minimumBound, m_maximumBound);
break;
case KX_ACT_CONSTRAINT_LOCZ:
Clamp(newposition[2], m_minimumBound, m_maximumBound);
break;
}
result = true;
if (m_posDampTime) {
newposition = filter*position + (1.0-filter)*newposition;
}
obj->NodeSetLocalPosition(newposition);
goto CHECK_TIME;
}
if (result) {
// set the new position but take into account parent if any
obj->NodeSetWorldPosition(newposition);
}
CHECK_TIME:
if (result && m_activeTime > 0 ) {
if (++m_currentTime >= m_activeTime)
result = false;
}
}
if (!result) {
m_currentTime = 0;
}
return result;
} /* end of KX_ConstraintActuator::Update(double curtime,double deltatime) */
void KX_ConstraintActuator::Clamp(MT_Scalar &var,
float min,
float max) {
if (var < min) {
var = min;
} else if (var > max) {
var = max;
}
}
bool KX_ConstraintActuator::IsValidMode(KX_ConstraintActuator::KX_CONSTRAINTTYPE m)
{
bool res = false;
if ( (m > KX_ACT_CONSTRAINT_NODEF) && (m < KX_ACT_CONSTRAINT_MAX)) {
res = true;
}
return res;
}
/* ------------------------------------------------------------------------- */
/* Python functions */
/* ------------------------------------------------------------------------- */
/* Integration hooks ------------------------------------------------------- */
PyTypeObject KX_ConstraintActuator::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"KX_ConstraintActuator",
sizeof(KX_ConstraintActuator),
0,
PyDestructor,
0,
__getattr,
__setattr,
0, //&MyPyCompare,
__repr,
0, //&cvalue_as_number,
0,
0,
0,
0
};
PyParentObject KX_ConstraintActuator::Parents[] = {
&KX_ConstraintActuator::Type,
&SCA_IActuator::Type,
&SCA_ILogicBrick::Type,
&CValue::Type,
NULL
};
PyMethodDef KX_ConstraintActuator::Methods[] = {
{"setDamp", (PyCFunction) KX_ConstraintActuator::sPySetDamp, METH_VARARGS, SetDamp_doc},
{"getDamp", (PyCFunction) KX_ConstraintActuator::sPyGetDamp, METH_NOARGS, GetDamp_doc},
{"setRotDamp", (PyCFunction) KX_ConstraintActuator::sPySetRotDamp, METH_VARARGS, SetRotDamp_doc},
{"getRotDamp", (PyCFunction) KX_ConstraintActuator::sPyGetRotDamp, METH_NOARGS, GetRotDamp_doc},
{"setDirection", (PyCFunction) KX_ConstraintActuator::sPySetDirection, METH_VARARGS, SetDirection_doc},
{"getDirection", (PyCFunction) KX_ConstraintActuator::sPyGetDirection, METH_NOARGS, GetDirection_doc},
{"setOption", (PyCFunction) KX_ConstraintActuator::sPySetOption, METH_VARARGS, SetOption_doc},
{"getOption", (PyCFunction) KX_ConstraintActuator::sPyGetOption, METH_NOARGS, GetOption_doc},
{"setTime", (PyCFunction) KX_ConstraintActuator::sPySetTime, METH_VARARGS, SetTime_doc},
{"getTime", (PyCFunction) KX_ConstraintActuator::sPyGetTime, METH_NOARGS, GetTime_doc},
{"setProperty", (PyCFunction) KX_ConstraintActuator::sPySetProperty, METH_VARARGS, SetProperty_doc},
{"getProperty", (PyCFunction) KX_ConstraintActuator::sPyGetProperty, METH_NOARGS, GetProperty_doc},
{"setMin", (PyCFunction) KX_ConstraintActuator::sPySetMin, METH_VARARGS, SetMin_doc},
{"getMin", (PyCFunction) KX_ConstraintActuator::sPyGetMin, METH_NOARGS, GetMin_doc},
{"setDistance", (PyCFunction) KX_ConstraintActuator::sPySetMin, METH_VARARGS, SetDistance_doc},
{"getDistance", (PyCFunction) KX_ConstraintActuator::sPyGetMin, METH_NOARGS, GetDistance_doc},
{"setMax", (PyCFunction) KX_ConstraintActuator::sPySetMax, METH_VARARGS, SetMax_doc},
{"getMax", (PyCFunction) KX_ConstraintActuator::sPyGetMax, METH_NOARGS, GetMax_doc},
{"setRayLength", (PyCFunction) KX_ConstraintActuator::sPySetMax, METH_VARARGS, SetRayLength_doc},
{"getRayLength", (PyCFunction) KX_ConstraintActuator::sPyGetMax, METH_NOARGS, GetRayLength_doc},
{"setLimit", (PyCFunction) KX_ConstraintActuator::sPySetLimit, METH_VARARGS, SetLimit_doc},
{"getLimit", (PyCFunction) KX_ConstraintActuator::sPyGetLimit, METH_NOARGS, GetLimit_doc},
{NULL,NULL} //Sentinel
};
PyObject* KX_ConstraintActuator::_getattr(const STR_String& attr) {
_getattr_up(SCA_IActuator);
}
/* 2. setDamp */
const char KX_ConstraintActuator::SetDamp_doc[] =
"setDamp(duration)\n"
"\t- duration: integer\n"
"\tSets the time constant of the orientation and distance constraint.\n"
"\tIf the duration is negative, it is set to 0.\n";
PyObject* KX_ConstraintActuator::PySetDamp(PyObject* self,
PyObject* args,
PyObject* kwds) {
int dampArg;
if(!PyArg_ParseTuple(args, "i", &dampArg)) {
return NULL;
}
m_posDampTime = dampArg;
if (m_posDampTime < 0) m_posDampTime = 0;
Py_Return;
}
/* 3. getDamp */
const char KX_ConstraintActuator::GetDamp_doc[] =
"getDamp()\n"
"\tReturns the damping parameter.\n";
PyObject* KX_ConstraintActuator::PyGetDamp(PyObject* self){
return PyInt_FromLong(m_posDampTime);
}
/* 2. setRotDamp */
const char KX_ConstraintActuator::SetRotDamp_doc[] =
"setRotDamp(duration)\n"
"\t- duration: integer\n"
"\tSets the time constant of the orientation constraint.\n"
"\tIf the duration is negative, it is set to 0.\n";
PyObject* KX_ConstraintActuator::PySetRotDamp(PyObject* self,
PyObject* args,
PyObject* kwds) {
int dampArg;
if(!PyArg_ParseTuple(args, "i", &dampArg)) {
return NULL;
}
m_rotDampTime = dampArg;
if (m_rotDampTime < 0) m_rotDampTime = 0;
Py_Return;
}
/* 3. getRotDamp */
const char KX_ConstraintActuator::GetRotDamp_doc[] =
"getRotDamp()\n"
"\tReturns the damping time for application of the constraint.\n";
PyObject* KX_ConstraintActuator::PyGetRotDamp(PyObject* self){
return PyInt_FromLong(m_rotDampTime);
}
/* 2. setDirection */
const char KX_ConstraintActuator::SetDirection_doc[] =
"setDirection(vector)\n"
"\t- vector: 3-tuple\n"
"\tSets the reference direction in world coordinate for the orientation constraint.\n";
PyObject* KX_ConstraintActuator::PySetDirection(PyObject* self,
PyObject* args,
PyObject* kwds) {
float x, y, z;
MT_Scalar len;
MT_Vector3 dir;
if(!PyArg_ParseTuple(args, "(fff)", &x, &y, &z)) {
return NULL;
}
dir[0] = x;
dir[1] = y;
dir[2] = z;
len = dir.length();
if (MT_fuzzyZero(len)) {
std::cout << "Invalid direction" << std::endl;
return NULL;
}
m_refDirection = dir/len;
Py_Return;
}
/* 3. getDirection */
const char KX_ConstraintActuator::GetDirection_doc[] =
"getDirection()\n"
"\tReturns the reference direction of the orientation constraint as a 3-tuple.\n";
PyObject* KX_ConstraintActuator::PyGetDirection(PyObject* self){
PyObject *retVal = PyList_New(3);
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_refDirection[0]));
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_refDirection[1]));
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_refDirection[2]));
return retVal;
}
/* 2. setOption */
const char KX_ConstraintActuator::SetOption_doc[] =
"setOption(option)\n"
"\t- option: integer\n"
"\tSets several options of the distance constraint.\n"
"\tBinary combination of the following values:\n"
"\t\t 64 : Activate alignment to surface\n"
"\t\t128 : Detect material rather than property\n"
"\t\t256 : No deactivation if ray does not hit target\n"
"\t\t512 : Activate distance control\n";
PyObject* KX_ConstraintActuator::PySetOption(PyObject* self,
PyObject* args,
PyObject* kwds) {
int option;
if(!PyArg_ParseTuple(args, "i", &option)) {
return NULL;
}
m_option = option;
Py_Return;
}
/* 3. getOption */
const char KX_ConstraintActuator::GetOption_doc[] =
"getOption()\n"
"\tReturns the option parameter.\n";
PyObject* KX_ConstraintActuator::PyGetOption(PyObject* self){
return PyInt_FromLong(m_option);
}
/* 2. setTime */
const char KX_ConstraintActuator::SetTime_doc[] =
"setTime(duration)\n"
"\t- duration: integer\n"
"\tSets the activation time of the actuator.\n"
"\tThe actuator disables itself after this many frame.\n"
"\tIf set to 0 or negative, the actuator is not limited in time.\n";
PyObject* KX_ConstraintActuator::PySetTime(PyObject* self,
PyObject* args,
PyObject* kwds) {
int t;
if(!PyArg_ParseTuple(args, "i", &t)) {
return NULL;
}
if (t < 0)
t = 0;
m_activeTime = t;
Py_Return;
}
/* 3. getTime */
const char KX_ConstraintActuator::GetTime_doc[] =
"getTime()\n"
"\tReturns the time parameter.\n";
PyObject* KX_ConstraintActuator::PyGetTime(PyObject* self){
return PyInt_FromLong(m_activeTime);
}
/* 2. setProperty */
const char KX_ConstraintActuator::SetProperty_doc[] =
"setProperty(property)\n"
"\t- property: string\n"
"\tSets the name of the property or material for the ray detection of the distance constraint.\n"
"\tIf empty, the ray will detect any collisioning object.\n";
PyObject* KX_ConstraintActuator::PySetProperty(PyObject* self,
PyObject* args,
PyObject* kwds) {
char *property;
if (!PyArg_ParseTuple(args, "s", &property)) {
return NULL;
}
if (property == NULL) {
m_property[0] = 0;
} else {
strncpy(m_property, property, sizeof(m_property));
m_property[sizeof(m_property)-1] = 0;
}
Py_Return;
}
/* 3. getProperty */
const char KX_ConstraintActuator::GetProperty_doc[] =
"getProperty()\n"
"\tReturns the property parameter.\n";
PyObject* KX_ConstraintActuator::PyGetProperty(PyObject* self){
return PyString_FromString(m_property);
}
/* 4. setDistance */
const char KX_ConstraintActuator::SetDistance_doc[] =
"setDistance(distance)\n"
"\t- distance: float\n"
"\tSets the target distance in distance constraint\n";
/* 4. setMin */
const char KX_ConstraintActuator::SetMin_doc[] =
"setMin(lower_bound)\n"
"\t- lower_bound: float\n"
"\tSets the lower value of the interval to which the value\n"
"\tis clipped.\n";
PyObject* KX_ConstraintActuator::PySetMin(PyObject* self,
PyObject* args,
PyObject* kwds) {
float minArg;
if(!PyArg_ParseTuple(args, "f", &minArg)) {
return NULL;
}
switch (m_locrot) {
default:
m_minimumBound = minArg;
break;
case KX_ACT_CONSTRAINT_ROTX:
case KX_ACT_CONSTRAINT_ROTY:
case KX_ACT_CONSTRAINT_ROTZ:
m_minimumBound = MT_radians(minArg);
break;
}
Py_Return;
}
/* 5. getDistance */
const char KX_ConstraintActuator::GetDistance_doc[] =
"getDistance()\n"
"\tReturns the distance parameter \n";
/* 5. getMin */
const char KX_ConstraintActuator::GetMin_doc[] =
"getMin()\n"
"\tReturns the lower value of the interval to which the value\n"
"\tis clipped.\n";
PyObject* KX_ConstraintActuator::PyGetMin(PyObject* self) {
return PyFloat_FromDouble(m_minimumBound);
}
/* 6. setRayLength */
const char KX_ConstraintActuator::SetRayLength_doc[] =
"setRayLength(length)\n"
"\t- length: float\n"
"\tSets the maximum ray length of the distance constraint\n";
/* 6. setMax */
const char KX_ConstraintActuator::SetMax_doc[] =
"setMax(upper_bound)\n"
"\t- upper_bound: float\n"
"\tSets the upper value of the interval to which the value\n"
"\tis clipped.\n";
PyObject* KX_ConstraintActuator::PySetMax(PyObject* self,
PyObject* args,
PyObject* kwds){
float maxArg;
if(!PyArg_ParseTuple(args, "f", &maxArg)) {
return NULL;
}
switch (m_locrot) {
default:
m_maximumBound = maxArg;
break;
case KX_ACT_CONSTRAINT_ROTX:
case KX_ACT_CONSTRAINT_ROTY:
case KX_ACT_CONSTRAINT_ROTZ:
m_maximumBound = MT_radians(maxArg);
break;
}
Py_Return;
}
/* 7. getRayLength */
const char KX_ConstraintActuator::GetRayLength_doc[] =
"getRayLength()\n"
"\tReturns the length of the ray\n";
/* 7. getMax */
const char KX_ConstraintActuator::GetMax_doc[] =
"getMax()\n"
"\tReturns the upper value of the interval to which the value\n"
"\tis clipped.\n";
PyObject* KX_ConstraintActuator::PyGetMax(PyObject* self) {
return PyFloat_FromDouble(m_maximumBound);
}
/* This setter/getter probably for the constraint type */
/* 8. setLimit */
const char KX_ConstraintActuator::SetLimit_doc[] =
"setLimit(type)\n"
"\t- type: integer\n"
"\t 1 : LocX\n"
"\t 2 : LocY\n"
"\t 3 : LocZ\n"
"\t 7 : Distance along +X axis\n"
"\t 8 : Distance along +Y axis\n"
"\t 9 : Distance along +Z axis\n"
"\t 10 : Distance along -X axis\n"
"\t 11 : Distance along -Y axis\n"
"\t 12 : Distance along -Z axis\n"
"\t 13 : Align X axis\n"
"\t 14 : Align Y axis\n"
"\t 15 : Align Z axis\n"
"\tSets the type of constraint.\n";
PyObject* KX_ConstraintActuator::PySetLimit(PyObject* self,
PyObject* args,
PyObject* kwds) {
int locrotArg;
if(!PyArg_ParseTuple(args, "i", &locrotArg)) {
return NULL;
}
if (IsValidMode((KX_CONSTRAINTTYPE)locrotArg)) m_locrot = locrotArg;
Py_Return;
}
/* 9. getLimit */
const char KX_ConstraintActuator::GetLimit_doc[] =
"getLimit()\n"
"\tReturns the type of constraint.\n";
PyObject* KX_ConstraintActuator::PyGetLimit(PyObject* self) {
return PyInt_FromLong(m_locrot);
}
/* eof */