blender/extern/rangetree/intern/range_tree.c
2016-11-20 09:11:26 +11:00

874 lines
19 KiB
C

/*
* Copyright (c) 2016, Campbell Barton.
*
* Licensed under the Apache License, Version 2.0 (the "Apache License")
* with the following modification; you may not use this file except in
* compliance with the Apache License and the following modification to it:
* Section 6. Trademarks. is deleted and replaced with:
*
* 6. Trademarks. This License does not grant permission to use the trade
* names, trademarks, service marks, or product names of the Licensor
* and its affiliates, except as required to comply with Section 4(c) of
* the License and to reproduce the content of the NOTICE file.
*
* You may obtain a copy of the Apache License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the Apache License with the above modification is
* distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the Apache License for the specific
* language governing permissions and limitations under the Apache License.
*/
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include "range_tree.h"
typedef unsigned int uint;
/* Use binary-tree for lookups, else fallback to full search */
#define USE_BTREE
/* Use memory pool for nodes, else do individual allocations */
#define USE_TPOOL
/* Node representing a range in the RangeTreeUInt. */
typedef struct Node {
struct Node *next, *prev;
/* range (inclusive) */
uint min, max;
#ifdef USE_BTREE
/* Left leaning red-black tree, for reference implementation see:
* https://gitlab.com/ideasman42/btree-mini-py */
struct Node *left, *right;
/* RED/BLACK */
bool color;
#endif
} Node;
#ifdef USE_TPOOL
/* rt_pool_* pool allocator */
#define TPOOL_IMPL_PREFIX rt_node
#define TPOOL_ALLOC_TYPE Node
#define TPOOL_STRUCT ElemPool_Node
#include "generic_alloc_impl.h"
#undef TPOOL_IMPL_PREFIX
#undef TPOOL_ALLOC_TYPE
#undef TPOOL_STRUCT
#endif /* USE_TPOOL */
typedef struct LinkedList {
Node *first, *last;
} LinkedList;
typedef struct RangeTreeUInt {
uint range[2];
LinkedList list;
#ifdef USE_BTREE
Node *root;
#endif
#ifdef USE_TPOOL
struct ElemPool_Node epool;
#endif
} RangeTreeUInt;
/* ------------------------------------------------------------------------- */
/* List API */
static void list_push_front(LinkedList *list, Node *node)
{
if (list->first != NULL) {
node->next = list->first;
node->next->prev = node;
node->prev = NULL;
}
else {
list->last = node;
}
list->first = node;
}
static void list_push_back(LinkedList *list, Node *node)
{
if (list->first != NULL) {
node->prev = list->last;
node->prev->next = node;
node->next = NULL;
}
else {
list->first = node;
}
list->last = node;
}
static void list_push_after(LinkedList *list, Node *node_prev, Node *node_new)
{
/* node_new before node_next */
/* empty list */
if (list->first == NULL) {
list->first = node_new;
list->last = node_new;
return;
}
/* insert at head of list */
if (node_prev == NULL) {
node_new->prev = NULL;
node_new->next = list->first;
node_new->next->prev = node_new;
list->first = node_new;
return;
}
/* at end of list */
if (list->last == node_prev) {
list->last = node_new;
}
node_new->next = node_prev->next;
node_new->prev = node_prev;
node_prev->next = node_new;
if (node_new->next) {
node_new->next->prev = node_new;
}
}
static void list_push_before(LinkedList *list, Node *node_next, Node *node_new)
{
/* node_new before node_next */
/* empty list */
if (list->first == NULL) {
list->first = node_new;
list->last = node_new;
return;
}
/* insert at end of list */
if (node_next == NULL) {
node_new->prev = list->last;
node_new->next = NULL;
list->last->next = node_new;
list->last = node_new;
return;
}
/* at beginning of list */
if (list->first == node_next) {
list->first = node_new;
}
node_new->next = node_next;
node_new->prev = node_next->prev;
node_next->prev = node_new;
if (node_new->prev) {
node_new->prev->next = node_new;
}
}
static void list_remove(LinkedList *list, Node *node)
{
if (node->next != NULL) {
node->next->prev = node->prev;
}
if (node->prev != NULL) {
node->prev->next = node->next;
}
if (list->last == node) {
list->last = node->prev;
}
if (list->first == node) {
list->first = node->next;
}
}
static void list_clear(LinkedList *list)
{
list->first = NULL;
list->last = NULL;
}
/* end list API */
/* forward declarations */
static void rt_node_free(RangeTreeUInt *rt, Node *node);
#ifdef USE_BTREE
#ifdef DEBUG
static bool rb_is_balanced_root(const Node *root);
#endif
/* ------------------------------------------------------------------------- */
/* Internal BTree API
*
* Left-leaning red-black tree.
*/
/* use minimum, could use max too since nodes never overlap */
#define KEY(n) ((n)->min)
enum {
RED = 0,
BLACK = 1,
};
static bool is_red(const Node *node)
{
return (node && (node->color == RED));
}
static int key_cmp(uint key1, uint key2)
{
return (key1 == key2) ? 0 : ((key1 < key2) ? -1 : 1);
}
/* removed from the tree */
static void rb_node_invalidate(Node *node)
{
#ifdef DEBUG
node->left = NULL;
node->right = NULL;
node->color = false;
#else
(void)node;
#endif
}
static void rb_flip_color(Node *node)
{
node->color ^= 1;
node->left->color ^= 1;
node->right->color ^= 1;
}
static Node *rb_rotate_left(Node *left)
{
/* Make a right-leaning 3-node lean to the left. */
Node *right = left->right;
left->right = right->left;
right->left = left;
right->color = left->color;
left->color = RED;
return right;
}
static Node *rb_rotate_right(Node *right)
{
/* Make a left-leaning 3-node lean to the right. */
Node *left = right->left;
right->left = left->right;
left->right = right;
left->color = right->color;
right->color = RED;
return left;
}
/* Fixup colors when insert happened */
static Node *rb_fixup_insert(Node *node)
{
if (is_red(node->right) && !is_red(node->left)) {
node = rb_rotate_left(node);
}
if (is_red(node->left) && is_red(node->left->left)) {
node = rb_rotate_right(node);
}
if (is_red(node->left) && is_red(node->right)) {
rb_flip_color(node);
}
return node;
}
static Node *rb_insert_recursive(Node *node, Node *node_to_insert)
{
if (node == NULL) {
return node_to_insert;
}
const int cmp = key_cmp(KEY(node_to_insert), KEY(node));
if (cmp == 0) {
/* caller ensures no collisions */
assert(0);
}
else if (cmp == -1) {
node->left = rb_insert_recursive(node->left, node_to_insert);
}
else {
node->right = rb_insert_recursive(node->right, node_to_insert);
}
return rb_fixup_insert(node);
}
static Node *rb_insert_root(Node *root, Node *node_to_insert)
{
root = rb_insert_recursive(root, node_to_insert);
root->color = BLACK;
return root;
}
static Node *rb_move_red_to_left(Node *node)
{
/* Assuming that h is red and both h->left and h->left->left
* are black, make h->left or one of its children red.
*/
rb_flip_color(node);
if (node->right && is_red(node->right->left)) {
node->right = rb_rotate_right(node->right);
node = rb_rotate_left(node);
rb_flip_color(node);
}
return node;
}
static Node *rb_move_red_to_right(Node *node)
{
/* Assuming that h is red and both h->right and h->right->left
* are black, make h->right or one of its children red.
*/
rb_flip_color(node);
if (node->left && is_red(node->left->left)) {
node = rb_rotate_right(node);
rb_flip_color(node);
}
return node;
}
/* Fixup colors when remove happened */
static Node *rb_fixup_remove(Node *node)
{
if (is_red(node->right)) {
node = rb_rotate_left(node);
}
if (is_red(node->left) && is_red(node->left->left)) {
node = rb_rotate_right(node);
}
if (is_red(node->left) && is_red(node->right)) {
rb_flip_color(node);
}
return node;
}
static Node *rb_pop_min_recursive(Node *node, Node **r_node_pop)
{
if (node == NULL) {
return NULL;
}
if (node->left == NULL) {
rb_node_invalidate(node);
*r_node_pop = node;
return NULL;
}
if ((!is_red(node->left)) && (!is_red(node->left->left))) {
node = rb_move_red_to_left(node);
}
node->left = rb_pop_min_recursive(node->left, r_node_pop);
return rb_fixup_remove(node);
}
static Node *rb_remove_recursive(Node *node, const Node *node_to_remove)
{
if (node == NULL) {
return NULL;
}
if (key_cmp(KEY(node_to_remove), KEY(node)) == -1) {
if (node->left != NULL) {
if ((!is_red(node->left)) && (!is_red(node->left->left))) {
node = rb_move_red_to_left(node);
}
}
node->left = rb_remove_recursive(node->left, node_to_remove);
}
else {
if (is_red(node->left)) {
node = rb_rotate_right(node);
}
if ((node == node_to_remove) && (node->right == NULL)) {
rb_node_invalidate(node);
return NULL;
}
assert(node->right != NULL);
if ((!is_red(node->right)) && (!is_red(node->right->left))) {
node = rb_move_red_to_right(node);
}
if (node == node_to_remove) {
/* minor improvement over original method:
* no need to double lookup min */
Node *node_free; /* will always be set */
node->right = rb_pop_min_recursive(node->right, &node_free);
node_free->left = node->left;
node_free->right = node->right;
node_free->color = node->color;
rb_node_invalidate(node);
node = node_free;
}
else {
node->right = rb_remove_recursive(node->right, node_to_remove);
}
}
return rb_fixup_remove(node);
}
static Node *rb_btree_remove(Node *root, const Node *node_to_remove)
{
root = rb_remove_recursive(root, node_to_remove);
if (root != NULL) {
root->color = BLACK;
}
return root;
}
/*
* Returns the node closest to and including 'key',
* excluding anything below.
*/
static Node *rb_get_or_upper_recursive(Node *n, const uint key)
{
if (n == NULL) {
return NULL;
}
const int cmp_upper = key_cmp(KEY(n), key);
if (cmp_upper == 0) {
return n; // exact match
}
else if (cmp_upper == 1) {
assert(KEY(n) >= key);
Node *n_test = rb_get_or_upper_recursive(n->left, key);
return n_test ? n_test : n;
}
else { // cmp_upper == -1
return rb_get_or_upper_recursive(n->right, key);
}
}
/*
* Returns the node closest to and including 'key',
* excluding anything above.
*/
static Node *rb_get_or_lower_recursive(Node *n, const uint key)
{
if (n == NULL) {
return NULL;
}
const int cmp_lower = key_cmp(KEY(n), key);
if (cmp_lower == 0) {
return n; // exact match
}
else if (cmp_lower == -1) {
assert(KEY(n) <= key);
Node *n_test = rb_get_or_lower_recursive(n->right, key);
return n_test ? n_test : n;
}
else { // cmp_lower == 1
return rb_get_or_lower_recursive(n->left, key);
}
}
#ifdef DEBUG
static bool rb_is_balanced_recursive(const Node *node, int black)
{
// Does every path from the root to a leaf have the given number
// of black links?
if (node == NULL) {
return black == 0;
}
if (!is_red(node)) {
black--;
}
return rb_is_balanced_recursive(node->left, black) &&
rb_is_balanced_recursive(node->right, black);
}
static bool rb_is_balanced_root(const Node *root)
{
// Do all paths from root to leaf have same number of black edges?
int black = 0; // number of black links on path from root to min
const Node *node = root;
while (node != NULL) {
if (!is_red(node)) {
black++;
}
node = node->left;
}
return rb_is_balanced_recursive(root, black);
}
#endif // DEBUG
/* End BTree API */
#endif // USE_BTREE
/* ------------------------------------------------------------------------- */
/* Internal RangeTreeUInt API */
#ifdef _WIN32
#define inline __inline
#endif
static inline Node *rt_node_alloc(RangeTreeUInt *rt)
{
#ifdef USE_TPOOL
return rt_node_pool_elem_alloc(&rt->epool);
#else
(void)rt;
return malloc(sizeof(Node));
#endif
}
static Node *rt_node_new(RangeTreeUInt *rt, uint min, uint max)
{
Node *node = rt_node_alloc(rt);
assert(min <= max);
node->prev = NULL;
node->next = NULL;
node->min = min;
node->max = max;
#ifdef USE_BTREE
node->left = NULL;
node->right = NULL;
#endif
return node;
}
static void rt_node_free(RangeTreeUInt *rt, Node *node)
{
#ifdef USE_TPOOL
rt_node_pool_elem_free(&rt->epool, node);
#else
(void)rt;
free(node);
#endif
}
#ifdef USE_BTREE
static void rt_btree_insert(RangeTreeUInt *rt, Node *node)
{
node->color = RED;
node->left = NULL;
node->right = NULL;
rt->root = rb_insert_root(rt->root, node);
}
#endif
static void rt_node_add_back(RangeTreeUInt *rt, Node *node)
{
list_push_back(&rt->list, node);
#ifdef USE_BTREE
rt_btree_insert(rt, node);
#endif
}
static void rt_node_add_front(RangeTreeUInt *rt, Node *node)
{
list_push_front(&rt->list, node);
#ifdef USE_BTREE
rt_btree_insert(rt, node);
#endif
}
static void rt_node_add_before(RangeTreeUInt *rt, Node *node_next, Node *node)
{
list_push_before(&rt->list, node_next, node);
#ifdef USE_BTREE
rt_btree_insert(rt, node);
#endif
}
static void rt_node_add_after(RangeTreeUInt *rt, Node *node_prev, Node *node)
{
list_push_after(&rt->list, node_prev, node);
#ifdef USE_BTREE
rt_btree_insert(rt, node);
#endif
}
static void rt_node_remove(RangeTreeUInt *rt, Node *node)
{
list_remove(&rt->list, node);
#ifdef USE_BTREE
rt->root = rb_btree_remove(rt->root, node);
#endif
rt_node_free(rt, node);
}
static Node *rt_find_node_from_value(RangeTreeUInt *rt, const uint value)
{
#ifdef USE_BTREE
Node *node = rb_get_or_lower_recursive(rt->root, value);
if (node != NULL) {
if ((value >= node->min) && (value <= node->max)) {
return node;
}
}
return NULL;
#else
for (Node *node = rt->list.first; node; node = node->next) {
if ((value >= node->min) && (value <= node->max)) {
return node;
}
}
return NULL;
#endif // USE_BTREE
}
static void rt_find_node_pair_around_value(RangeTreeUInt *rt, const uint value,
Node **r_node_prev, Node **r_node_next)
{
if (value < rt->list.first->min) {
*r_node_prev = NULL;
*r_node_next = rt->list.first;
return;
}
else if (value > rt->list.last->max) {
*r_node_prev = rt->list.last;
*r_node_next = NULL;
return;
}
else {
#ifdef USE_BTREE
Node *node_next = rb_get_or_upper_recursive(rt->root, value);
if (node_next != NULL) {
Node *node_prev = node_next->prev;
if ((node_prev->max < value) && (value < node_next->min)) {
*r_node_prev = node_prev;
*r_node_next = node_next;
return;
}
}
#else
Node *node_prev = rt->list.first;
Node *node_next;
while ((node_next = node_prev->next)) {
if ((node_prev->max < value) && (value < node_next->min)) {
*r_node_prev = node_prev;
*r_node_next = node_next;
return;
}
node_prev = node_next;
}
#endif // USE_BTREE
}
*r_node_prev = NULL;
*r_node_next = NULL;
}
/* ------------------------------------------------------------------------- */
/* Public API */
static RangeTreeUInt *rt_create_empty(uint min, uint max)
{
RangeTreeUInt *rt = malloc(sizeof(*rt));
rt->range[0] = min;
rt->range[1] = max;
list_clear(&rt->list);
#ifdef USE_BTREE
rt->root = NULL;
#endif
#ifdef USE_TPOOL
rt_node_pool_create(&rt->epool, 512);
#endif
return rt;
}
RangeTreeUInt *range_tree_uint_alloc(uint min, uint max)
{
RangeTreeUInt *rt = rt_create_empty(min, max);
Node *node = rt_node_new(rt, min, max);
rt_node_add_front(rt, node);
return rt;
}
void range_tree_uint_free(RangeTreeUInt *rt)
{
#ifdef DEBUG
#ifdef USE_BTREE
assert(rb_is_balanced_root(rt->root));
#endif
#endif
#ifdef USE_TPOOL
rt_node_pool_destroy(&rt->epool);
#else
for (Node *node = rt->list.first, *node_next; node; node = node_next) {
node_next = node->next;
rt_node_free(rt, node);
}
#endif
free(rt);
}
#ifdef USE_BTREE
static Node *rt_copy_recursive(RangeTreeUInt *rt_dst, const Node *node_src)
{
if (node_src == NULL) {
return NULL;
}
Node *node_dst = rt_node_alloc(rt_dst);
*node_dst = *node_src;
node_dst->left = rt_copy_recursive(rt_dst, node_dst->left);
list_push_back(&rt_dst->list, node_dst);
node_dst->right = rt_copy_recursive(rt_dst, node_dst->right);
return node_dst;
}
#endif // USE_BTREE
RangeTreeUInt *range_tree_uint_copy(const RangeTreeUInt *rt_src)
{
RangeTreeUInt *rt_dst = rt_create_empty(rt_src->range[0], rt_src->range[1]);
#ifdef USE_BTREE
rt_dst->root = rt_copy_recursive(rt_dst, rt_src->root);
#else
for (Node *node_src = rt_src->list.first; node_src; node_src = node_src->next) {
Node *node_dst = rt_node_alloc(rt_dst);
*node_dst = *node_src;
list_push_back(&rt_dst->list, node_dst);
}
#endif
return rt_dst;
}
/**
* Return true if the tree has the value (not taken).
*/
bool range_tree_uint_has(RangeTreeUInt *rt, const uint value)
{
assert(value >= rt->range[0] && value <= rt->range[1]);
Node *node = rt_find_node_from_value(rt, value);
return (node != NULL);
}
static void range_tree_uint_take_impl(RangeTreeUInt *rt, const uint value, Node *node)
{
assert(node == rt_find_node_from_value(rt, value));
if (node->min == value) {
if (node->max != value) {
node->min += 1;
}
else {
assert(node->min == node->max);
rt_node_remove(rt, node);
}
}
else if (node->max == value) {
node->max -= 1;
}
else {
Node *node_next = rt_node_new(rt, value + 1, node->max);
node->max = value - 1;
rt_node_add_after(rt, node, node_next);
}
}
void range_tree_uint_take(RangeTreeUInt *rt, const uint value)
{
Node *node = rt_find_node_from_value(rt, value);
assert(node != NULL);
range_tree_uint_take_impl(rt, value, node);
}
bool range_tree_uint_retake(RangeTreeUInt *rt, const uint value)
{
Node *node = rt_find_node_from_value(rt, value);
if (node != NULL) {
range_tree_uint_take_impl(rt, value, node);
return true;
}
else {
return false;
}
}
uint range_tree_uint_take_any(RangeTreeUInt *rt)
{
Node *node = rt->list.first;
uint value = node->min;
if (value == node->max) {
rt_node_remove(rt, node);
}
else {
node->min += 1;
}
return value;
}
void range_tree_uint_release(RangeTreeUInt *rt, const uint value)
{
bool touch_prev, touch_next;
Node *node_prev, *node_next;
if (rt->list.first != NULL) {
rt_find_node_pair_around_value(rt, value, &node_prev, &node_next);
/* the value must have been already taken */
assert(node_prev || node_next);
/* Cases:
* 1) fill the gap between prev & next (two spans into one span).
* 2) touching prev, (grow node_prev->max up one).
* 3) touching next, (grow node_next->min down one).
* 4) touching neither, add a new segment. */
touch_prev = (node_prev != NULL && node_prev->max + 1 == value);
touch_next = (node_next != NULL && node_next->min - 1 == value);
}
else {
// we could handle this case (4) inline,
// since its not a common case - use regular logic.
node_prev = node_next = NULL;
touch_prev = false;
touch_next = false;
}
if (touch_prev && touch_next) { // 1)
node_prev->max = node_next->max;
rt_node_remove(rt, node_next);
}
else if (touch_prev) { // 2)
assert(node_prev->max + 1 == value);
node_prev->max = value;
}
else if (touch_next) { // 3)
assert(node_next->min - 1 == value);
node_next->min = value;
}
else { // 4)
Node *node_new = rt_node_new(rt, value, value);
if (node_prev != NULL) {
rt_node_add_after(rt, node_prev, node_new);
}
else if (node_next != NULL) {
rt_node_add_before(rt, node_next, node_new);
}
else {
assert(rt->list.first == NULL);
rt_node_add_back(rt, node_new);
}
}
}