blender/extern/bullet/BulletDynamics/Dynamics/RigidBody.cpp

160 lines
3.7 KiB
C++

#include "RigidBody.h"
#include "MassProps.h"
#include "CollisionShapes/ConvexShape.h"
#include "GEN_minmax.h"
#include <SimdTransformUtil.h>
float gRigidBodyDamping = 0.5f;
static int uniqueId = 0;
RigidBody::RigidBody( const MassProps& massProps,SimdScalar linearDamping,SimdScalar angularDamping,SimdScalar friction,SimdScalar restitution)
: m_collisionShape(0),
m_activationState1(1),
m_hitFraction(1.f),
m_gravity(0.0f, 0.0f, 0.0f),
m_linearDamping(0.f),
m_angularDamping(0.5f),
m_totalForce(0.0f, 0.0f, 0.0f),
m_totalTorque(0.0f, 0.0f, 0.0f),
m_linearVelocity(0.0f, 0.0f, 0.0f),
m_angularVelocity(0.f,0.f,0.f),
m_restitution(restitution),
m_friction(friction)
{
m_debugBodyId = uniqueId++;
setMassProps(massProps.m_mass, massProps.m_inertiaLocal);
setDamping(linearDamping, angularDamping);
m_worldTransform.setIdentity();
updateInertiaTensor();
}
void RigidBody::setLinearVelocity(const SimdVector3& lin_vel)
{
m_linearVelocity = lin_vel;
}
void RigidBody::predictIntegratedTransform(SimdScalar timeStep,SimdTransform& predictedTransform) const
{
SimdTransformUtil::IntegrateTransform(m_worldTransform,m_linearVelocity,m_angularVelocity,timeStep,predictedTransform);
}
void RigidBody::getAabb(SimdVector3& aabbMin,SimdVector3& aabbMax) const
{
m_collisionShape ->GetAabb(m_worldTransform,aabbMin,aabbMax);
}
void RigidBody::SetCollisionShape(CollisionShape* mink)
{
m_collisionShape = mink;
SimdTransform ident;
ident.setIdentity();
SimdVector3 aabbMin,aabbMax;
m_collisionShape ->GetAabb(ident,aabbMin,aabbMax);
SimdVector3 diag = (aabbMax-aabbMin)*0.5f;
}
void RigidBody::setGravity(const SimdVector3& acceleration)
{
if (m_inverseMass != 0.0f)
{
m_gravity = acceleration * (1.0f / m_inverseMass);
}
}
bool RigidBody::mergesSimulationIslands() const
{
return ( getInvMass() != 0) ;
}
void RigidBody::SetActivationState(int newState)
{
m_activationState1 = newState;
}
void RigidBody::setDamping(SimdScalar lin_damping, SimdScalar ang_damping)
{
m_linearDamping = GEN_clamped(lin_damping, 0.0f, 1.0f);
m_angularDamping = GEN_clamped(ang_damping, 0.0f, 1.0f);
}
#include <stdio.h>
void RigidBody::applyForces(SimdScalar step)
{
applyCentralForce(m_gravity);
m_linearVelocity *= GEN_clamped((1.f - step * m_linearDamping), 0.0f, 1.0f);
m_angularVelocity *= GEN_clamped((1.f - step * m_angularDamping), 0.0f, 1.0f);
}
void RigidBody::proceedToTransform(const SimdTransform& newTrans)
{
setCenterOfMassTransform( newTrans );
}
void RigidBody::setMassProps(SimdScalar mass, const SimdVector3& inertia)
{
m_inverseMass = mass != 0.0f ? 1.0f / mass : 0.0f;
m_invInertiaLocal.setValue(inertia[0] != 0.0f ? 1.0f / inertia[0]: 0.0f,
inertia[1] != 0.0f ? 1.0f / inertia[1]: 0.0f,
inertia[2] != 0.0f ? 1.0f / inertia[2]: 0.0f);
}
void RigidBody::updateInertiaTensor()
{
m_invInertiaTensorWorld = m_worldTransform.getBasis().scaled(m_invInertiaLocal) * m_worldTransform.getBasis().transpose();
}
void RigidBody::integrateVelocities(SimdScalar step)
{
m_linearVelocity += m_totalForce * (m_inverseMass * step);
m_angularVelocity += m_invInertiaTensorWorld * m_totalTorque * step;
#define MAX_ANGVEL SIMD_HALF_PI
/// clamp angular velocity. collision calculations will fail on higher angular velocities
float angvel = m_angularVelocity.length();
if (angvel*step > MAX_ANGVEL)
{
m_angularVelocity *= (MAX_ANGVEL/step) /angvel;
}
clearForces();
}
SimdQuaternion RigidBody::getOrientation() const
{
SimdQuaternion orn;
m_worldTransform.getBasis().getRotation(orn);
return orn;
}
void RigidBody::setCenterOfMassTransform(const SimdTransform& xform)
{
m_worldTransform = xform;
// m_worldTransform.getBasis().getRotation(m_orn1);
updateInertiaTensor();
}