blender/intern/cycles/kernel/kernel_emission.h
George Kyriazis 7f4479da42 Cycles: OpenCL kernel split
This commit contains all the work related on the AMD megakernel split work
which was mainly done by Varun Sundar, George Kyriazis and Lenny Wang, plus
some help from Sergey Sharybin, Martijn Berger, Thomas Dinges and likely
someone else which we're forgetting to mention.

Currently only AMD cards are enabled for the new split kernel, but it is
possible to force split opencl kernel to be used by setting the following
environment variable: CYCLES_OPENCL_SPLIT_KERNEL_TEST=1.

Not all the features are supported yet, and that being said no motion blur,
camera blur, SSS and volumetrics for now. Also transparent shadows are
disabled on AMD device because of some compiler bug.

This kernel is also only implements regular path tracing and supporting
branched one will take a bit. Branched path tracing is exposed to the
interface still, which is a bit misleading and will be hidden there soon.

More feature will be enabled once they're ported to the split kernel and
tested.

Neither regular CPU nor CUDA has any difference, they're generating the
same exact code, which means no regressions/improvements there.

Based on the research paper:

  https://research.nvidia.com/sites/default/files/publications/laine2013hpg_paper.pdf

Here's the documentation:

  https://docs.google.com/document/d/1LuXW-CV-sVJkQaEGZlMJ86jZ8FmoPfecaMdR-oiWbUY/edit

Design discussion of the patch:

  https://developer.blender.org/T44197

Differential Revision: https://developer.blender.org/D1200
2015-05-09 19:52:40 +05:00

313 lines
9.2 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* Direction Emission */
ccl_device_noinline float3 direct_emissive_eval(KernelGlobals *kg,
LightSample *ls, float3 I, differential3 dI, float t, float time, int bounce, int transparent_bounce
#ifdef __SPLIT_KERNEL__
,ShaderData *sd_input
#endif
)
{
/* setup shading at emitter */
#ifdef __SPLIT_KERNEL__
ShaderData *sd = sd_input;
#else
ShaderData sd_object;
ShaderData *sd = &sd_object;
#endif
float3 eval;
#ifdef __BACKGROUND_MIS__
if(ls->type == LIGHT_BACKGROUND) {
Ray ray;
ray.D = ls->D;
ray.P = ls->P;
ray.t = 1.0f;
#ifdef __OBJECT_MOTION__
ray.time = time;
#endif
ray.dP = differential3_zero();
ray.dD = dI;
shader_setup_from_background(kg, sd, &ray, bounce+1, transparent_bounce);
eval = shader_eval_background(kg, sd, 0, SHADER_CONTEXT_EMISSION);
}
else
#endif
{
shader_setup_from_sample(kg, sd, ls->P, ls->Ng, I, ls->shader, ls->object, ls->prim, ls->u, ls->v, t, time, bounce+1, transparent_bounce);
ls->Ng = ccl_fetch(sd, Ng);
/* no path flag, we're evaluating this for all closures. that's weak but
* we'd have to do multiple evaluations otherwise */
shader_eval_surface(kg, sd, 0.0f, 0, SHADER_CONTEXT_EMISSION);
/* evaluate emissive closure */
if(ccl_fetch(sd, flag) & SD_EMISSION)
eval = shader_emissive_eval(kg, sd);
else
eval = make_float3(0.0f, 0.0f, 0.0f);
}
eval *= ls->eval_fac;
return eval;
}
/* The argument sd_DL is meaningful only for split kernel. Other uses can just pass NULL */
ccl_device_noinline bool direct_emission(KernelGlobals *kg, ShaderData *sd,
LightSample *ls, Ray *ray, BsdfEval *eval, bool *is_lamp,
int bounce, int transparent_bounce
#ifdef __SPLIT_KERNEL__
, ShaderData *sd_DL
#endif
)
{
if(ls->pdf == 0.0f)
return false;
/* todo: implement */
differential3 dD = differential3_zero();
/* evaluate closure */
float3 light_eval = direct_emissive_eval(kg, ls, -ls->D, dD, ls->t, ccl_fetch(sd, time),
bounce,
transparent_bounce
#ifdef __SPLIT_KERNEL__
,sd_DL
#endif
);
if(is_zero(light_eval))
return false;
/* evaluate BSDF at shading point */
float bsdf_pdf;
#ifdef __VOLUME__
if(ccl_fetch(sd, prim) != PRIM_NONE)
shader_bsdf_eval(kg, sd, ls->D, eval, &bsdf_pdf);
else
shader_volume_phase_eval(kg, sd, ls->D, eval, &bsdf_pdf);
#else
shader_bsdf_eval(kg, sd, ls->D, eval, &bsdf_pdf);
#endif
if(ls->shader & SHADER_USE_MIS) {
/* multiple importance sampling */
float mis_weight = power_heuristic(ls->pdf, bsdf_pdf);
light_eval *= mis_weight;
}
bsdf_eval_mul(eval, light_eval/ls->pdf);
#ifdef __PASSES__
/* use visibility flag to skip lights */
if(ls->shader & SHADER_EXCLUDE_ANY) {
if(ls->shader & SHADER_EXCLUDE_DIFFUSE)
eval->diffuse = make_float3(0.0f, 0.0f, 0.0f);
if(ls->shader & SHADER_EXCLUDE_GLOSSY)
eval->glossy = make_float3(0.0f, 0.0f, 0.0f);
if(ls->shader & SHADER_EXCLUDE_TRANSMIT)
eval->transmission = make_float3(0.0f, 0.0f, 0.0f);
if(ls->shader & SHADER_EXCLUDE_SCATTER)
eval->scatter = make_float3(0.0f, 0.0f, 0.0f);
}
#endif
if(bsdf_eval_is_zero(eval))
return false;
if(ls->shader & SHADER_CAST_SHADOW) {
/* setup ray */
bool transmit = (dot(ccl_fetch(sd, Ng), ls->D) < 0.0f);
ray->P = ray_offset(ccl_fetch(sd, P), (transmit)? -ccl_fetch(sd, Ng): ccl_fetch(sd, Ng));
if(ls->t == FLT_MAX) {
/* distant light */
ray->D = ls->D;
ray->t = ls->t;
}
else {
/* other lights, avoid self-intersection */
ray->D = ray_offset(ls->P, ls->Ng) - ray->P;
ray->D = normalize_len(ray->D, &ray->t);
}
ray->dP = ccl_fetch(sd, dP);
ray->dD = differential3_zero();
}
else {
/* signal to not cast shadow ray */
ray->t = 0.0f;
}
/* return if it's a lamp for shadow pass */
*is_lamp = (ls->prim == PRIM_NONE && ls->type != LIGHT_BACKGROUND);
return true;
}
/* Indirect Primitive Emission */
ccl_device_noinline float3 indirect_primitive_emission(KernelGlobals *kg, ShaderData *sd, float t, int path_flag, float bsdf_pdf)
{
/* evaluate emissive closure */
float3 L = shader_emissive_eval(kg, sd);
#ifdef __HAIR__
if(!(path_flag & PATH_RAY_MIS_SKIP) && (ccl_fetch(sd, flag) & SD_USE_MIS) && (ccl_fetch(sd, type) & PRIMITIVE_ALL_TRIANGLE))
#else
if(!(path_flag & PATH_RAY_MIS_SKIP) && (ccl_fetch(sd, flag) & SD_USE_MIS))
#endif
{
/* multiple importance sampling, get triangle light pdf,
* and compute weight with respect to BSDF pdf */
float pdf = triangle_light_pdf(kg, ccl_fetch(sd, Ng), ccl_fetch(sd, I), t);
float mis_weight = power_heuristic(bsdf_pdf, pdf);
return L*mis_weight;
}
return L;
}
/* Indirect Lamp Emission */
/* The argument sd is meaningful only for split kernel. Other uses can just pass NULL */
ccl_device_noinline bool indirect_lamp_emission(KernelGlobals *kg, PathState *state, Ray *ray, float3 *emission
#ifdef __SPLIT_KERNEL__
,ShaderData *sd
#endif
)
{
bool hit_lamp = false;
*emission = make_float3(0.0f, 0.0f, 0.0f);
for(int lamp = 0; lamp < kernel_data.integrator.num_all_lights; lamp++) {
LightSample ls;
if(!lamp_light_eval(kg, lamp, ray->P, ray->D, ray->t, &ls))
continue;
#ifdef __PASSES__
/* use visibility flag to skip lights */
if(ls.shader & SHADER_EXCLUDE_ANY) {
if(((ls.shader & SHADER_EXCLUDE_DIFFUSE) && (state->flag & PATH_RAY_DIFFUSE)) ||
((ls.shader & SHADER_EXCLUDE_GLOSSY) &&
((state->flag & (PATH_RAY_GLOSSY|PATH_RAY_REFLECT)) == (PATH_RAY_GLOSSY|PATH_RAY_REFLECT))) ||
((ls.shader & SHADER_EXCLUDE_TRANSMIT) && (state->flag & PATH_RAY_TRANSMIT)) ||
((ls.shader & SHADER_EXCLUDE_SCATTER) && (state->flag & PATH_RAY_VOLUME_SCATTER)))
continue;
}
#endif
float3 L = direct_emissive_eval(kg, &ls, -ray->D, ray->dD, ls.t, ray->time,
state->bounce,
state->transparent_bounce
#ifdef __SPLIT_KERNEL__
,sd
#endif
);
#ifdef __VOLUME__
if(state->volume_stack[0].shader != SHADER_NONE) {
/* shadow attenuation */
Ray volume_ray = *ray;
volume_ray.t = ls.t;
float3 volume_tp = make_float3(1.0f, 1.0f, 1.0f);
kernel_volume_shadow(kg, state, &volume_ray, &volume_tp);
L *= volume_tp;
}
#endif
if(!(state->flag & PATH_RAY_MIS_SKIP)) {
/* multiple importance sampling, get regular light pdf,
* and compute weight with respect to BSDF pdf */
float mis_weight = power_heuristic(state->ray_pdf, ls.pdf);
L *= mis_weight;
}
*emission += L;
hit_lamp = true;
}
return hit_lamp;
}
/* Indirect Background */
ccl_device_noinline float3 indirect_background(KernelGlobals *kg, ccl_addr_space PathState *state, ccl_addr_space Ray *ray
#ifdef __SPLIT_KERNEL__
,ShaderData *sd_global
#endif
)
{
#ifdef __BACKGROUND__
int shader = kernel_data.background.surface_shader;
/* use visibility flag to skip lights */
if(shader & SHADER_EXCLUDE_ANY) {
if(((shader & SHADER_EXCLUDE_DIFFUSE) && (state->flag & PATH_RAY_DIFFUSE)) ||
((shader & SHADER_EXCLUDE_GLOSSY) &&
((state->flag & (PATH_RAY_GLOSSY|PATH_RAY_REFLECT)) == (PATH_RAY_GLOSSY|PATH_RAY_REFLECT))) ||
((shader & SHADER_EXCLUDE_TRANSMIT) && (state->flag & PATH_RAY_TRANSMIT)) ||
((shader & SHADER_EXCLUDE_CAMERA) && (state->flag & PATH_RAY_CAMERA)) ||
((shader & SHADER_EXCLUDE_SCATTER) && (state->flag & PATH_RAY_VOLUME_SCATTER)))
return make_float3(0.0f, 0.0f, 0.0f);
}
#ifdef __SPLIT_KERNEL__
/* evaluate background closure */
Ray priv_ray = *ray;
shader_setup_from_background(kg, sd_global, &priv_ray, state->bounce+1, state->transparent_bounce);
float3 L = shader_eval_background(kg, sd_global, state->flag, SHADER_CONTEXT_EMISSION);
#else
ShaderData sd;
shader_setup_from_background(kg, &sd, ray, state->bounce+1, state->transparent_bounce);
float3 L = shader_eval_background(kg, &sd, state->flag, SHADER_CONTEXT_EMISSION);
#endif
#ifdef __BACKGROUND_MIS__
/* check if background light exists or if we should skip pdf */
int res = kernel_data.integrator.pdf_background_res;
if(!(state->flag & PATH_RAY_MIS_SKIP) && res) {
/* multiple importance sampling, get background light pdf for ray
* direction, and compute weight with respect to BSDF pdf */
float pdf = background_light_pdf(kg, ray->P, ray->D);
float mis_weight = power_heuristic(state->ray_pdf, pdf);
return L*mis_weight;
}
#endif
return L;
#else
return make_float3(0.8f, 0.8f, 0.8f);
#endif
}
CCL_NAMESPACE_END