blender/extern/recastnavigation/Detour/Source/DetourStatNavMeshBuilder.cpp

347 lines
9.0 KiB
C++

//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "DetourStatNavMesh.h"
struct BVItem
{
unsigned short bmin[3];
unsigned short bmax[3];
int i;
};
static int compareItemX(const void* va, const void* vb)
{
const BVItem* a = (const BVItem*)va;
const BVItem* b = (const BVItem*)vb;
if (a->bmin[0] < b->bmin[0])
return -1;
if (a->bmin[0] > b->bmin[0])
return 1;
return 0;
}
static int compareItemY(const void* va, const void* vb)
{
const BVItem* a = (const BVItem*)va;
const BVItem* b = (const BVItem*)vb;
if (a->bmin[1] < b->bmin[1])
return -1;
if (a->bmin[1] > b->bmin[1])
return 1;
return 0;
}
static int compareItemZ(const void* va, const void* vb)
{
const BVItem* a = (const BVItem*)va;
const BVItem* b = (const BVItem*)vb;
if (a->bmin[2] < b->bmin[2])
return -1;
if (a->bmin[2] > b->bmin[2])
return 1;
return 0;
}
static void calcExtends(BVItem* items, int nitems, int imin, int imax,
unsigned short* bmin, unsigned short* bmax)
{
bmin[0] = items[imin].bmin[0];
bmin[1] = items[imin].bmin[1];
bmin[2] = items[imin].bmin[2];
bmax[0] = items[imin].bmax[0];
bmax[1] = items[imin].bmax[1];
bmax[2] = items[imin].bmax[2];
for (int i = imin+1; i < imax; ++i)
{
const BVItem& it = items[i];
if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0];
if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1];
if (it.bmin[2] < bmin[2]) bmin[2] = it.bmin[2];
if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0];
if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1];
if (it.bmax[2] > bmax[2]) bmax[2] = it.bmax[2];
}
}
inline int longestAxis(unsigned short x, unsigned short y, unsigned short z)
{
int axis = 0;
unsigned short maxVal = x;
if (y > maxVal)
{
axis = 1;
maxVal = y;
}
if (z > maxVal)
{
axis = 2;
maxVal = z;
}
return axis;
}
static void subdivide(BVItem* items, int nitems, int imin, int imax, int& curNode, dtStatBVNode* nodes)
{
int inum = imax - imin;
int icur = curNode;
dtStatBVNode& node = nodes[curNode++];
if (inum == 1)
{
// Leaf
node.bmin[0] = items[imin].bmin[0];
node.bmin[1] = items[imin].bmin[1];
node.bmin[2] = items[imin].bmin[2];
node.bmax[0] = items[imin].bmax[0];
node.bmax[1] = items[imin].bmax[1];
node.bmax[2] = items[imin].bmax[2];
node.i = items[imin].i;
}
else
{
// Split
calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
int axis = longestAxis(node.bmax[0] - node.bmin[0],
node.bmax[1] - node.bmin[1],
node.bmax[2] - node.bmin[2]);
if (axis == 0)
{
// Sort along x-axis
qsort(items+imin, inum, sizeof(BVItem), compareItemX);
}
else if (axis == 1)
{
// Sort along y-axis
qsort(items+imin, inum, sizeof(BVItem), compareItemY);
}
else
{
// Sort along z-axis
qsort(items+imin, inum, sizeof(BVItem), compareItemZ);
}
int isplit = imin+inum/2;
// Left
subdivide(items, nitems, imin, isplit, curNode, nodes);
// Right
subdivide(items, nitems, isplit, imax, curNode, nodes);
int iescape = curNode - icur;
// Negative index means escape.
node.i = -iescape;
}
}
/*static*/ int createBVTree(const unsigned short* verts, const int nverts,
const unsigned short* polys, const int npolys, const int nvp,
float cs, float ch,
int nnodes, dtStatBVNode* nodes)
{
// Build tree
BVItem* items = new BVItem[npolys];
for (int i = 0; i < npolys; i++)
{
BVItem& it = items[i];
it.i = i+1;
// Calc polygon bounds.
const unsigned short* p = &polys[i*nvp*2];
it.bmin[0] = it.bmax[0] = verts[p[0]*3+0];
it.bmin[1] = it.bmax[1] = verts[p[0]*3+1];
it.bmin[2] = it.bmax[2] = verts[p[0]*3+2];
for (int j = 1; j < nvp; ++j)
{
if (p[j] == 0xffff) break;
unsigned short x = verts[p[j]*3+0];
unsigned short y = verts[p[j]*3+1];
unsigned short z = verts[p[j]*3+2];
if (x < it.bmin[0]) it.bmin[0] = x;
if (y < it.bmin[1]) it.bmin[1] = y;
if (z < it.bmin[2]) it.bmin[2] = z;
if (x > it.bmax[0]) it.bmax[0] = x;
if (y > it.bmax[1]) it.bmax[1] = y;
if (z > it.bmax[2]) it.bmax[2] = z;
}
// Remap y
it.bmin[1] = (unsigned short)floorf((float)it.bmin[1]*ch/cs);
it.bmax[1] = (unsigned short)ceilf((float)it.bmax[1]*ch/cs);
}
int curNode = 0;
subdivide(items, npolys, 0, npolys, curNode, nodes);
delete [] items;
return curNode;
}
bool dtCreateNavMeshData(const unsigned short* verts, const int nverts,
const unsigned short* polys, const int npolys, const int nvp,
const float* bmin, const float* bmax, float cs, float ch,
const unsigned short* dmeshes, const float* dverts, const int ndverts,
const unsigned char* dtris, const int ndtris,
unsigned char** outData, int* outDataSize)
{
if (nvp > DT_STAT_VERTS_PER_POLYGON)
return false;
if (nverts >= 0xffff)
return false;
if (!nverts)
return false;
if (!npolys)
return false;
if (!dmeshes || !dverts || ! dtris)
return false;
// Find unique detail vertices.
int uniqueDetailVerts = 0;
if (dmeshes)
{
for (int i = 0; i < npolys; ++i)
{
const unsigned short* p = &polys[i*nvp*2];
int ndv = dmeshes[i*4+1];
int nv = 0;
for (int j = 0; j < nvp; ++j)
{
if (p[j] == 0xffff) break;
nv++;
}
ndv -= nv;
uniqueDetailVerts += ndv;
}
}
// Calculate data size
const int headerSize = sizeof(dtStatNavMeshHeader);
const int vertsSize = sizeof(float)*3*nverts;
const int polysSize = sizeof(dtStatPoly)*npolys;
const int nodesSize = sizeof(dtStatBVNode)*npolys*2;
const int detailMeshesSize = sizeof(dtStatPolyDetail)*npolys;
const int detailVertsSize = sizeof(float)*3*uniqueDetailVerts;
const int detailTrisSize = sizeof(unsigned char)*4*ndtris;
const int dataSize = headerSize + vertsSize + polysSize + nodesSize +
detailMeshesSize + detailVertsSize + detailTrisSize;
unsigned char* data = new unsigned char[dataSize];
if (!data)
return false;
memset(data, 0, dataSize);
unsigned char* d = data;
dtStatNavMeshHeader* header = (dtStatNavMeshHeader*)d; d += headerSize;
float* navVerts = (float*)d; d += vertsSize;
dtStatPoly* navPolys = (dtStatPoly*)d; d += polysSize;
dtStatBVNode* navNodes = (dtStatBVNode*)d; d += nodesSize;
dtStatPolyDetail* navDMeshes = (dtStatPolyDetail*)d; d += detailMeshesSize;
float* navDVerts = (float*)d; d += detailVertsSize;
unsigned char* navDTris = (unsigned char*)d; d += detailTrisSize;
// Store header
header->magic = DT_STAT_NAVMESH_MAGIC;
header->version = DT_STAT_NAVMESH_VERSION;
header->npolys = npolys;
header->nverts = nverts;
header->cs = cs;
header->bmin[0] = bmin[0];
header->bmin[1] = bmin[1];
header->bmin[2] = bmin[2];
header->bmax[0] = bmax[0];
header->bmax[1] = bmax[1];
header->bmax[2] = bmax[2];
header->ndmeshes = dmeshes ? npolys : 0;
header->ndverts = dmeshes ? uniqueDetailVerts : 0;
header->ndtris = dmeshes ? ndtris : 0;
// Store vertices
for (int i = 0; i < nverts; ++i)
{
const unsigned short* iv = &verts[i*3];
float* v = &navVerts[i*3];
v[0] = bmin[0] + iv[0] * cs;
v[1] = bmin[1] + iv[1] * ch;
v[2] = bmin[2] + iv[2] * cs;
}
// Store polygons
const unsigned short* src = polys;
for (int i = 0; i < npolys; ++i)
{
dtStatPoly* p = &navPolys[i];
p->nv = 0;
for (int j = 0; j < nvp; ++j)
{
if (src[j] == 0xffff) break;
p->v[j] = src[j];
p->n[j] = src[nvp+j]+1;
p->nv++;
}
src += nvp*2;
}
header->nnodes = createBVTree(verts, nverts, polys, npolys, nvp,
cs, ch, npolys*2, navNodes);
// Store detail meshes and vertices.
// The nav polygon vertices are stored as the first vertices on each mesh.
// We compress the mesh data by skipping them and using the navmesh coordinates.
unsigned short vbase = 0;
for (int i = 0; i < npolys; ++i)
{
dtStatPolyDetail& dtl = navDMeshes[i];
const int vb = dmeshes[i*4+0];
const int ndv = dmeshes[i*4+1];
const int nv = navPolys[i].nv;
dtl.vbase = vbase;
dtl.nverts = ndv-nv;
dtl.tbase = dmeshes[i*4+2];
dtl.ntris = dmeshes[i*4+3];
// Copy vertices except the first 'nv' verts which are equal to nav poly verts.
if (ndv-nv)
{
memcpy(&navDVerts[vbase*3], &dverts[(vb+nv)*3], sizeof(float)*3*(ndv-nv));
vbase += ndv-nv;
}
}
// Store triangles.
memcpy(navDTris, dtris, sizeof(unsigned char)*4*ndtris);
*outData = data;
*outDataSize = dataSize;
return true;
}