blender/intern/cycles/kernel/kernel_queue_enqueue.cl
George Kyriazis 7f4479da42 Cycles: OpenCL kernel split
This commit contains all the work related on the AMD megakernel split work
which was mainly done by Varun Sundar, George Kyriazis and Lenny Wang, plus
some help from Sergey Sharybin, Martijn Berger, Thomas Dinges and likely
someone else which we're forgetting to mention.

Currently only AMD cards are enabled for the new split kernel, but it is
possible to force split opencl kernel to be used by setting the following
environment variable: CYCLES_OPENCL_SPLIT_KERNEL_TEST=1.

Not all the features are supported yet, and that being said no motion blur,
camera blur, SSS and volumetrics for now. Also transparent shadows are
disabled on AMD device because of some compiler bug.

This kernel is also only implements regular path tracing and supporting
branched one will take a bit. Branched path tracing is exposed to the
interface still, which is a bit misleading and will be hidden there soon.

More feature will be enabled once they're ported to the split kernel and
tested.

Neither regular CPU nor CUDA has any difference, they're generating the
same exact code, which means no regressions/improvements there.

Based on the research paper:

  https://research.nvidia.com/sites/default/files/publications/laine2013hpg_paper.pdf

Here's the documentation:

  https://docs.google.com/document/d/1LuXW-CV-sVJkQaEGZlMJ86jZ8FmoPfecaMdR-oiWbUY/edit

Design discussion of the patch:

  https://developer.blender.org/T44197

Differential Revision: https://developer.blender.org/D1200
2015-05-09 19:52:40 +05:00

99 lines
4.1 KiB
Common Lisp

/*
* Copyright 2011-2015 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel_compat_opencl.h"
#include "kernel_math.h"
#include "kernel_types.h"
#include "kernel_globals.h"
#include "kernel_queues.h"
/*
* The kernel "kernel_ocl_path_trace_queue_enqueue" enqueues rays of
* different ray state into their appropriate Queues;
* 1. Rays that have been determined to hit the background from the
* "kernel_ocl_path_trace_scene_intersect" kernel
* are enqueued in QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS;
* 2. Rays that have been determined to be actively participating in path-iteration will be enqueued into QUEUE_ACTIVE_AND_REGENERATED_RAYS.
*
* The input and output of the kernel is as follows,
*
* ray_state -------------------------------------------|--- kernel_ocl_path_trace_queue_enqueue --|--- Queue_data (QUEUE_ACTIVE_AND_REGENERATED_RAYS & QUEUE_HITBF_BUFF_UPDATE_TOREGEN_RAYS)
* Queue_index(QUEUE_ACTIVE_AND_REGENERATED_RAYS) ------| |--- Queue_index (QUEUE_ACTIVE_AND_REGENERATED_RAYS & QUEUE_HITBF_BUFF_UPDATE_TOREGEN_RAYS)
* Queue_index(QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS) ---| |
* queuesize -------------------------------------------| |
*
* Note on Queues :
* State of queues during the first time this kernel is called :
* At entry,
* Both QUEUE_ACTIVE_AND_REGENERATED_RAYS and QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be empty.
* At exit,
* QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE rays
* QUEUE_HITBF_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_HIT_BACKGROUND rays.
*
* State of queue during other times this kernel is called :
* At entry,
* QUEUE_ACTIVE_AND_REGENERATED_RAYS will be empty.
* QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will contain RAY_TO_REGENERATE and RAY_UPDATE_BUFFER rays.
* At exit,
* QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE rays.
* QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_TO_REGENERATE, RAY_UPDATE_BUFFER, RAY_HIT_BACKGROUND rays.
*/
__kernel void kernel_ocl_path_trace_queue_enqueue(
ccl_global int *Queue_data, /* Queue memory */
ccl_global int *Queue_index, /* Tracks the number of elements in each queue */
ccl_global char *ray_state, /* Denotes the state of each ray */
int queuesize /* Size (capacity) of each queue */
)
{
/* We have only 2 cases (Hit/Not-Hit) */
ccl_local unsigned int local_queue_atomics[2];
int lidx = get_local_id(1) * get_local_size(0) + get_local_id(0);
int ray_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
if(lidx < 2 ) {
local_queue_atomics[lidx] = 0;
}
barrier(CLK_LOCAL_MEM_FENCE);
int queue_number = -1;
if(IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND)) {
queue_number = QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS;
} else if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
queue_number = QUEUE_ACTIVE_AND_REGENERATED_RAYS;
}
unsigned int my_lqidx;
if(queue_number != -1) {
my_lqidx = get_local_queue_index(queue_number, local_queue_atomics);
}
barrier(CLK_LOCAL_MEM_FENCE);
if(lidx == 0) {
local_queue_atomics[QUEUE_ACTIVE_AND_REGENERATED_RAYS] = get_global_per_queue_offset(QUEUE_ACTIVE_AND_REGENERATED_RAYS, local_queue_atomics, Queue_index);
local_queue_atomics[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] = get_global_per_queue_offset(QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS, local_queue_atomics, Queue_index);
}
barrier(CLK_LOCAL_MEM_FENCE);
unsigned int my_gqidx;
if(queue_number != -1) {
my_gqidx = get_global_queue_index(queue_number, queuesize, my_lqidx, local_queue_atomics);
Queue_data[my_gqidx] = ray_index;
}
}