blender/intern/cycles/kernel/kernel_shader_eval.cl
George Kyriazis 7f4479da42 Cycles: OpenCL kernel split
This commit contains all the work related on the AMD megakernel split work
which was mainly done by Varun Sundar, George Kyriazis and Lenny Wang, plus
some help from Sergey Sharybin, Martijn Berger, Thomas Dinges and likely
someone else which we're forgetting to mention.

Currently only AMD cards are enabled for the new split kernel, but it is
possible to force split opencl kernel to be used by setting the following
environment variable: CYCLES_OPENCL_SPLIT_KERNEL_TEST=1.

Not all the features are supported yet, and that being said no motion blur,
camera blur, SSS and volumetrics for now. Also transparent shadows are
disabled on AMD device because of some compiler bug.

This kernel is also only implements regular path tracing and supporting
branched one will take a bit. Branched path tracing is exposed to the
interface still, which is a bit misleading and will be hidden there soon.

More feature will be enabled once they're ported to the split kernel and
tested.

Neither regular CPU nor CUDA has any difference, they're generating the
same exact code, which means no regressions/improvements there.

Based on the research paper:

  https://research.nvidia.com/sites/default/files/publications/laine2013hpg_paper.pdf

Here's the documentation:

  https://docs.google.com/document/d/1LuXW-CV-sVJkQaEGZlMJ86jZ8FmoPfecaMdR-oiWbUY/edit

Design discussion of the patch:

  https://developer.blender.org/T44197

Differential Revision: https://developer.blender.org/D1200
2015-05-09 19:52:40 +05:00

94 lines
4.8 KiB
Common Lisp

/*
* Copyright 2011-2015 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel_split.h"
/*
* Note on kernel_ocl_path_trace_shader_evaluation kernel
* This kernel is the 5th kernel in the ray tracing logic. This is
* the 4rd kernel in path iteration. This kernel sets up the ShaderData
* structure from the values computed by the previous kernels. It also identifies
* the rays of state RAY_TO_REGENERATE and enqueues them in QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue.
*
* The input and output of the kernel is as follows,
* rng_coop -------------------------------------------|--- kernel_ocl_path_trace_shader_evaluation --|--- shader_data
* Ray_coop -------------------------------------------| |--- Queue_data (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS)
* PathState_coop -------------------------------------| |--- Queue_index (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS)
* Intersection_coop ----------------------------------| |
* Queue_data (QUEUE_ACTIVE_AND_REGENERATD_RAYS)-------| |
* Queue_index(QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS)---| |
* ray_state ------------------------------------------| |
* kg (globals + data) --------------------------------| |
* queuesize ------------------------------------------| |
*
* Note on Queues :
* This kernel reads from the QUEUE_ACTIVE_AND_REGENERATED_RAYS queue and processes
* only the rays of state RAY_ACTIVE;
* State of queues when this kernel is called,
* at entry,
* QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE and RAY_REGENERATED rays
* QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be empty.
* at exit,
* QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE and RAY_REGENERATED rays
* QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_TO_REGENERATE rays
*/
__kernel void kernel_ocl_path_trace_shader_evaluation(
ccl_global char *globals,
ccl_constant KernelData *data,
ccl_global char *shader_data, /* Output ShaderData structure to be filled */
ccl_global uint *rng_coop, /* Required for rbsdf calculation */
ccl_global Ray *Ray_coop, /* Required for setting up shader from ray */
ccl_global PathState *PathState_coop, /* Required for all functions in this kernel */
Intersection *Intersection_coop, /* Required for setting up shader from ray */
ccl_global char *ray_state, /* Denotes the state of each ray */
ccl_global int *Queue_data, /* queue memory */
ccl_global int *Queue_index, /* Tracks the number of elements in each queue */
int queuesize /* Size (capacity) of each queue */
)
{
int ray_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
/* Enqeueue RAY_TO_REGENERATE rays into QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue */
ccl_local unsigned int local_queue_atomics;
if(get_local_id(0) == 0 && get_local_id(1) == 0) {
local_queue_atomics = 0;
}
barrier(CLK_LOCAL_MEM_FENCE);
char enqueue_flag = (IS_STATE(ray_state, ray_index, RAY_TO_REGENERATE)) ? 1 : 0;
enqueue_ray_index_local(ray_index, QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS, enqueue_flag, queuesize, &local_queue_atomics, Queue_data, Queue_index);
ray_index = get_ray_index(ray_index, QUEUE_ACTIVE_AND_REGENERATED_RAYS, Queue_data, queuesize, 0);
if(ray_index == QUEUE_EMPTY_SLOT)
return;
/* Continue on with shader evaluation */
if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
KernelGlobals *kg = (KernelGlobals *)globals;
ShaderData *sd = (ShaderData *)shader_data;
Intersection *isect = &Intersection_coop[ray_index];
ccl_global uint *rng = &rng_coop[ray_index];
ccl_global PathState *state = &PathState_coop[ray_index];
Ray ray = Ray_coop[ray_index];
shader_setup_from_ray(kg, sd, isect, &ray, state->bounce, state->transparent_bounce);
float rbsdf = path_state_rng_1D_for_decision(kg, rng, state, PRNG_BSDF);
shader_eval_surface(kg, sd, rbsdf, state->flag, SHADER_CONTEXT_MAIN);
}
}