forked from bartvdbraak/blender
263 lines
5.6 KiB
C
263 lines
5.6 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License
|
|
*/
|
|
|
|
/* Voronoi Distances */
|
|
|
|
float voronoi_distance(string distance_metric, vector d, float e)
|
|
{
|
|
#if 0
|
|
if (distance_metric == "Distance Squared")
|
|
#endif
|
|
return dot(d, d);
|
|
#if 0
|
|
if (distance_metric == "Actual Distance")
|
|
return length(d);
|
|
if (distance_metric == "Manhattan")
|
|
return fabs(d[0]) + fabs(d[1]) + fabs(d[2]);
|
|
if (distance_metric == "Chebychev")
|
|
return max(fabs(d[0]), max(fabs(d[1]), fabs(d[2])));
|
|
if (distance_metric == "Minkovsky 1/2")
|
|
return sqrt(fabs(d[0])) + sqrt(fabs(d[1])) + sqrt(fabs(d[1]));
|
|
if (distance_metric == "Minkovsky 4")
|
|
return sqrt(sqrt(dot(d * d, d * d)));
|
|
if (distance_metric == "Minkovsky")
|
|
return pow(pow(fabs(d[0]), e) + pow(fabs(d[1]), e) + pow(fabs(d[2]), e), 1.0 / e);
|
|
|
|
return 0.0;
|
|
#endif
|
|
}
|
|
|
|
/* Voronoi / Worley like */
|
|
|
|
color cellnoise_color(point p)
|
|
{
|
|
float r = cellnoise(p);
|
|
float g = cellnoise(point(p[1], p[0], p[2]));
|
|
float b = cellnoise(point(p[1], p[2], p[0]));
|
|
|
|
return color(r, g, b);
|
|
}
|
|
|
|
void voronoi(point p, string distance_metric, float e, float da[4], point pa[4])
|
|
{
|
|
/* returns distances in da and point coords in pa */
|
|
int xx, yy, zz, xi, yi, zi;
|
|
|
|
xi = (int)floor(p[0]);
|
|
yi = (int)floor(p[1]);
|
|
zi = (int)floor(p[2]);
|
|
|
|
da[0] = 1e10;
|
|
da[1] = 1e10;
|
|
da[2] = 1e10;
|
|
da[3] = 1e10;
|
|
|
|
for (xx = xi - 1; xx <= xi + 1; xx++) {
|
|
for (yy = yi - 1; yy <= yi + 1; yy++) {
|
|
for (zz = zi - 1; zz <= zi + 1; zz++) {
|
|
point ip = point(xx, yy, zz);
|
|
point vp = (point)cellnoise_color(ip);
|
|
point pd = p - (vp + ip);
|
|
float d = voronoi_distance(distance_metric, pd, e);
|
|
|
|
vp += point(xx, yy, zz);
|
|
|
|
if (d < da[0]) {
|
|
da[3] = da[2];
|
|
da[2] = da[1];
|
|
da[1] = da[0];
|
|
da[0] = d;
|
|
|
|
pa[3] = pa[2];
|
|
pa[2] = pa[1];
|
|
pa[1] = pa[0];
|
|
pa[0] = vp;
|
|
}
|
|
else if (d < da[1]) {
|
|
da[3] = da[2];
|
|
da[2] = da[1];
|
|
da[1] = d;
|
|
|
|
pa[3] = pa[2];
|
|
pa[2] = pa[1];
|
|
pa[1] = vp;
|
|
}
|
|
else if (d < da[2]) {
|
|
da[3] = da[2];
|
|
da[2] = d;
|
|
|
|
pa[3] = pa[2];
|
|
pa[2] = vp;
|
|
}
|
|
else if (d < da[3]) {
|
|
da[3] = d;
|
|
pa[3] = vp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float voronoi_Fn(point p, int n)
|
|
{
|
|
float da[4];
|
|
point pa[4];
|
|
|
|
voronoi(p, "Distance Squared", 0, da, pa);
|
|
|
|
return da[n];
|
|
}
|
|
|
|
float voronoi_FnFn(point p, int n1, int n2)
|
|
{
|
|
float da[4];
|
|
point pa[4];
|
|
|
|
voronoi(p, "Distance Squared", 0, da, pa);
|
|
|
|
return da[n2] - da[n1];
|
|
}
|
|
|
|
float voronoi_F1(point p) { return voronoi_Fn(p, 0); }
|
|
float voronoi_F2(point p) { return voronoi_Fn(p, 1); }
|
|
float voronoi_F3(point p) { return voronoi_Fn(p, 2); }
|
|
float voronoi_F4(point p) { return voronoi_Fn(p, 3); }
|
|
float voronoi_F1F2(point p) { return voronoi_FnFn(p, 0, 1); }
|
|
|
|
float voronoi_Cr(point p)
|
|
{
|
|
/* crackle type pattern, just a scale/clamp of F2-F1 */
|
|
float t = 10.0 * voronoi_F1F2(p);
|
|
return (t > 1.0) ? 1.0 : t;
|
|
}
|
|
|
|
float voronoi_F1S(point p) { return 2.0 * voronoi_F1(p) - 1.0; }
|
|
float voronoi_F2S(point p) { return 2.0 * voronoi_F2(p) - 1.0; }
|
|
float voronoi_F3S(point p) { return 2.0 * voronoi_F3(p) - 1.0; }
|
|
float voronoi_F4S(point p) { return 2.0 * voronoi_F4(p) - 1.0; }
|
|
float voronoi_F1F2S(point p) { return 2.0 * voronoi_F1F2(p) - 1.0; }
|
|
float voronoi_CrS(point p) { return 2.0 * voronoi_Cr(p) - 1.0; }
|
|
|
|
/* Noise Bases */
|
|
|
|
float safe_noise(point p, string type)
|
|
{
|
|
float f = 0.0;
|
|
|
|
/* Perlin noise in range -1..1 */
|
|
if (type == "signed")
|
|
f = noise("perlin", p);
|
|
|
|
/* Perlin noise in range 0..1 */
|
|
else
|
|
f = noise(p);
|
|
|
|
/* can happen for big coordinates, things even out to 0.5 then anyway */
|
|
if (!isfinite(f))
|
|
return 0.5;
|
|
|
|
return f;
|
|
}
|
|
|
|
float noise_basis(point p, string basis)
|
|
{
|
|
if (basis == "Perlin")
|
|
return safe_noise(p, "unsigned");
|
|
if (basis == "Voronoi F1")
|
|
return voronoi_F1S(p);
|
|
if (basis == "Voronoi F2")
|
|
return voronoi_F2S(p);
|
|
if (basis == "Voronoi F3")
|
|
return voronoi_F3S(p);
|
|
if (basis == "Voronoi F4")
|
|
return voronoi_F4S(p);
|
|
if (basis == "Voronoi F2-F1")
|
|
return voronoi_F1F2S(p);
|
|
if (basis == "Voronoi Crackle")
|
|
return voronoi_CrS(p);
|
|
if (basis == "Cell Noise")
|
|
return cellnoise(p);
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
/* Soft/Hard Noise */
|
|
|
|
float noise_basis_hard(point p, string basis, int hard)
|
|
{
|
|
float t = noise_basis(p, basis);
|
|
return (hard) ? fabs(2.0 * t - 1.0) : t;
|
|
}
|
|
|
|
/* Turbulence */
|
|
|
|
float noise_turbulence(point p, string basis, float details, int hard)
|
|
{
|
|
float fscale = 1.0;
|
|
float amp = 1.0;
|
|
float sum = 0.0;
|
|
int i, n;
|
|
|
|
float octaves = clamp(details, 0.0, 16.0);
|
|
n = (int)octaves;
|
|
|
|
for (i = 0; i <= n; i++) {
|
|
float t = noise_basis(fscale * p, basis);
|
|
|
|
if (hard)
|
|
t = fabs(2.0 * t - 1.0);
|
|
|
|
sum += t * amp;
|
|
amp *= 0.5;
|
|
fscale *= 2.0;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
|
|
if (rmd != 0.0) {
|
|
float t = noise_basis(fscale * p, basis);
|
|
|
|
if (hard)
|
|
t = fabs(2.0 * t - 1.0);
|
|
|
|
float sum2 = sum + t * amp;
|
|
|
|
sum *= ((float)(1 << n) / (float)((1 << (n + 1)) - 1));
|
|
sum2 *= ((float)(1 << (n + 1)) / (float)((1 << (n + 2)) - 1));
|
|
|
|
return (1.0 - rmd) * sum + rmd * sum2;
|
|
}
|
|
else {
|
|
sum *= ((float)(1 << n) / (float)((1 << (n + 1)) - 1));
|
|
return sum;
|
|
}
|
|
}
|
|
|
|
/* Utility */
|
|
|
|
float nonzero(float f, float eps)
|
|
{
|
|
float r;
|
|
|
|
if (abs(f) < eps)
|
|
r = sign(f) * eps;
|
|
else
|
|
r = f;
|
|
|
|
return r;
|
|
}
|
|
|