blender/intern/cycles/kernel/shaders/node_texture.h

263 lines
5.6 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
/* Voronoi Distances */
float voronoi_distance(string distance_metric, vector d, float e)
{
#if 0
if (distance_metric == "Distance Squared")
#endif
return dot(d, d);
#if 0
if (distance_metric == "Actual Distance")
return length(d);
if (distance_metric == "Manhattan")
return fabs(d[0]) + fabs(d[1]) + fabs(d[2]);
if (distance_metric == "Chebychev")
return max(fabs(d[0]), max(fabs(d[1]), fabs(d[2])));
if (distance_metric == "Minkovsky 1/2")
return sqrt(fabs(d[0])) + sqrt(fabs(d[1])) + sqrt(fabs(d[1]));
if (distance_metric == "Minkovsky 4")
return sqrt(sqrt(dot(d * d, d * d)));
if (distance_metric == "Minkovsky")
return pow(pow(fabs(d[0]), e) + pow(fabs(d[1]), e) + pow(fabs(d[2]), e), 1.0 / e);
return 0.0;
#endif
}
/* Voronoi / Worley like */
color cellnoise_color(point p)
{
float r = cellnoise(p);
float g = cellnoise(point(p[1], p[0], p[2]));
float b = cellnoise(point(p[1], p[2], p[0]));
return color(r, g, b);
}
void voronoi(point p, string distance_metric, float e, float da[4], point pa[4])
{
/* returns distances in da and point coords in pa */
int xx, yy, zz, xi, yi, zi;
xi = (int)floor(p[0]);
yi = (int)floor(p[1]);
zi = (int)floor(p[2]);
da[0] = 1e10;
da[1] = 1e10;
da[2] = 1e10;
da[3] = 1e10;
for (xx = xi - 1; xx <= xi + 1; xx++) {
for (yy = yi - 1; yy <= yi + 1; yy++) {
for (zz = zi - 1; zz <= zi + 1; zz++) {
point ip = point(xx, yy, zz);
point vp = (point)cellnoise_color(ip);
point pd = p - (vp + ip);
float d = voronoi_distance(distance_metric, pd, e);
vp += point(xx, yy, zz);
if (d < da[0]) {
da[3] = da[2];
da[2] = da[1];
da[1] = da[0];
da[0] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = pa[0];
pa[0] = vp;
}
else if (d < da[1]) {
da[3] = da[2];
da[2] = da[1];
da[1] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = vp;
}
else if (d < da[2]) {
da[3] = da[2];
da[2] = d;
pa[3] = pa[2];
pa[2] = vp;
}
else if (d < da[3]) {
da[3] = d;
pa[3] = vp;
}
}
}
}
}
float voronoi_Fn(point p, int n)
{
float da[4];
point pa[4];
voronoi(p, "Distance Squared", 0, da, pa);
return da[n];
}
float voronoi_FnFn(point p, int n1, int n2)
{
float da[4];
point pa[4];
voronoi(p, "Distance Squared", 0, da, pa);
return da[n2] - da[n1];
}
float voronoi_F1(point p) { return voronoi_Fn(p, 0); }
float voronoi_F2(point p) { return voronoi_Fn(p, 1); }
float voronoi_F3(point p) { return voronoi_Fn(p, 2); }
float voronoi_F4(point p) { return voronoi_Fn(p, 3); }
float voronoi_F1F2(point p) { return voronoi_FnFn(p, 0, 1); }
float voronoi_Cr(point p)
{
/* crackle type pattern, just a scale/clamp of F2-F1 */
float t = 10.0 * voronoi_F1F2(p);
return (t > 1.0) ? 1.0 : t;
}
float voronoi_F1S(point p) { return 2.0 * voronoi_F1(p) - 1.0; }
float voronoi_F2S(point p) { return 2.0 * voronoi_F2(p) - 1.0; }
float voronoi_F3S(point p) { return 2.0 * voronoi_F3(p) - 1.0; }
float voronoi_F4S(point p) { return 2.0 * voronoi_F4(p) - 1.0; }
float voronoi_F1F2S(point p) { return 2.0 * voronoi_F1F2(p) - 1.0; }
float voronoi_CrS(point p) { return 2.0 * voronoi_Cr(p) - 1.0; }
/* Noise Bases */
float safe_noise(point p, string type)
{
float f = 0.0;
/* Perlin noise in range -1..1 */
if (type == "signed")
f = noise("perlin", p);
/* Perlin noise in range 0..1 */
else
f = noise(p);
/* can happen for big coordinates, things even out to 0.5 then anyway */
if (!isfinite(f))
return 0.5;
return f;
}
float noise_basis(point p, string basis)
{
if (basis == "Perlin")
return safe_noise(p, "unsigned");
if (basis == "Voronoi F1")
return voronoi_F1S(p);
if (basis == "Voronoi F2")
return voronoi_F2S(p);
if (basis == "Voronoi F3")
return voronoi_F3S(p);
if (basis == "Voronoi F4")
return voronoi_F4S(p);
if (basis == "Voronoi F2-F1")
return voronoi_F1F2S(p);
if (basis == "Voronoi Crackle")
return voronoi_CrS(p);
if (basis == "Cell Noise")
return cellnoise(p);
return 0.0;
}
/* Soft/Hard Noise */
float noise_basis_hard(point p, string basis, int hard)
{
float t = noise_basis(p, basis);
return (hard) ? fabs(2.0 * t - 1.0) : t;
}
/* Turbulence */
float noise_turbulence(point p, string basis, float details, int hard)
{
float fscale = 1.0;
float amp = 1.0;
float sum = 0.0;
int i, n;
float octaves = clamp(details, 0.0, 16.0);
n = (int)octaves;
for (i = 0; i <= n; i++) {
float t = noise_basis(fscale * p, basis);
if (hard)
t = fabs(2.0 * t - 1.0);
sum += t * amp;
amp *= 0.5;
fscale *= 2.0;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
float t = noise_basis(fscale * p, basis);
if (hard)
t = fabs(2.0 * t - 1.0);
float sum2 = sum + t * amp;
sum *= ((float)(1 << n) / (float)((1 << (n + 1)) - 1));
sum2 *= ((float)(1 << (n + 1)) / (float)((1 << (n + 2)) - 1));
return (1.0 - rmd) * sum + rmd * sum2;
}
else {
sum *= ((float)(1 << n) / (float)((1 << (n + 1)) - 1));
return sum;
}
}
/* Utility */
float nonzero(float f, float eps)
{
float r;
if (abs(f) < eps)
r = sign(f) * eps;
else
r = f;
return r;
}