forked from bartvdbraak/blender
27d660ad20
Currently only summed number of traversal steps and intersections used by the camera ray intersection pass is implemented, but in the future we will support more debug passes which would help checking what things makes the scene slow. Example of such extra passes could be number of bounces, time spent on the shader tree evaluation and so. Implementation from the Cycles side is pretty much straightforward, could only mention here that it's a build-time option disabled by default. From the blender side it's implemented as a PASS_DEBUG with several subtypes possible. This way we don't need to create an extra DNA pass type for each of the debug passes, saving us a bits. Reviewers: campbellbarton Reviewed By: campbellbarton Differential Revision: https://developer.blender.org/D813
431 lines
9.4 KiB
C++
431 lines
9.4 KiB
C++
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "buffers.h"
|
|
#include "device.h"
|
|
|
|
#include "util_debug.h"
|
|
#include "util_foreach.h"
|
|
#include "util_hash.h"
|
|
#include "util_image.h"
|
|
#include "util_math.h"
|
|
#include "util_opengl.h"
|
|
#include "util_time.h"
|
|
#include "util_types.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Buffer Params */
|
|
|
|
BufferParams::BufferParams()
|
|
{
|
|
width = 0;
|
|
height = 0;
|
|
|
|
full_x = 0;
|
|
full_y = 0;
|
|
full_width = 0;
|
|
full_height = 0;
|
|
|
|
Pass::add(PASS_COMBINED, passes);
|
|
}
|
|
|
|
void BufferParams::get_offset_stride(int& offset, int& stride)
|
|
{
|
|
offset = -(full_x + full_y*width);
|
|
stride = width;
|
|
}
|
|
|
|
bool BufferParams::modified(const BufferParams& params)
|
|
{
|
|
return !(full_x == params.full_x
|
|
&& full_y == params.full_y
|
|
&& width == params.width
|
|
&& height == params.height
|
|
&& full_width == params.full_width
|
|
&& full_height == params.full_height
|
|
&& Pass::equals(passes, params.passes));
|
|
}
|
|
|
|
int BufferParams::get_passes_size()
|
|
{
|
|
int size = 0;
|
|
|
|
foreach(Pass& pass, passes)
|
|
size += pass.components;
|
|
|
|
return align_up(size, 4);
|
|
}
|
|
|
|
/* Render Buffer Task */
|
|
|
|
RenderTile::RenderTile()
|
|
{
|
|
x = 0;
|
|
y = 0;
|
|
w = 0;
|
|
h = 0;
|
|
|
|
sample = 0;
|
|
start_sample = 0;
|
|
num_samples = 0;
|
|
resolution = 0;
|
|
|
|
offset = 0;
|
|
stride = 0;
|
|
|
|
buffer = 0;
|
|
rng_state = 0;
|
|
|
|
buffers = NULL;
|
|
}
|
|
|
|
/* Render Buffers */
|
|
|
|
RenderBuffers::RenderBuffers(Device *device_)
|
|
{
|
|
device = device_;
|
|
}
|
|
|
|
RenderBuffers::~RenderBuffers()
|
|
{
|
|
device_free();
|
|
}
|
|
|
|
void RenderBuffers::device_free()
|
|
{
|
|
if(buffer.device_pointer) {
|
|
device->mem_free(buffer);
|
|
buffer.clear();
|
|
}
|
|
|
|
if(rng_state.device_pointer) {
|
|
device->mem_free(rng_state);
|
|
rng_state.clear();
|
|
}
|
|
}
|
|
|
|
void RenderBuffers::reset(Device *device, BufferParams& params_)
|
|
{
|
|
params = params_;
|
|
|
|
/* free existing buffers */
|
|
device_free();
|
|
|
|
/* allocate buffer */
|
|
buffer.resize(params.width*params.height*params.get_passes_size());
|
|
device->mem_alloc(buffer, MEM_READ_WRITE);
|
|
device->mem_zero(buffer);
|
|
|
|
/* allocate rng state */
|
|
rng_state.resize(params.width, params.height);
|
|
|
|
uint *init_state = rng_state.resize(params.width, params.height);
|
|
int x, y, width = params.width, height = params.height;
|
|
|
|
for(x = 0; x < width; x++)
|
|
for(y = 0; y < height; y++)
|
|
init_state[x + y*width] = hash_int_2d(params.full_x+x, params.full_y+y);
|
|
|
|
device->mem_alloc(rng_state, MEM_READ_WRITE);
|
|
device->mem_copy_to(rng_state);
|
|
}
|
|
|
|
bool RenderBuffers::copy_from_device()
|
|
{
|
|
if(!buffer.device_pointer)
|
|
return false;
|
|
|
|
device->mem_copy_from(buffer, 0, params.width, params.height, params.get_passes_size()*sizeof(float));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RenderBuffers::get_pass_rect(PassType type, float exposure, int sample, int components, float *pixels)
|
|
{
|
|
int pass_offset = 0;
|
|
|
|
foreach(Pass& pass, params.passes) {
|
|
if(pass.type != type) {
|
|
pass_offset += pass.components;
|
|
continue;
|
|
}
|
|
|
|
float *in = (float*)buffer.data_pointer + pass_offset;
|
|
int pass_stride = params.get_passes_size();
|
|
|
|
float scale = (pass.filter)? 1.0f/(float)sample: 1.0f;
|
|
float scale_exposure = (pass.exposure)? scale*exposure: scale;
|
|
|
|
int size = params.width*params.height;
|
|
|
|
if(components == 1) {
|
|
assert(pass.components == components);
|
|
|
|
/* scalar */
|
|
if(type == PASS_DEPTH) {
|
|
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
|
|
float f = *in;
|
|
pixels[0] = (f == 0.0f)? 1e10f: f*scale_exposure;
|
|
}
|
|
}
|
|
else if(type == PASS_MIST) {
|
|
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
|
|
float f = *in;
|
|
pixels[0] = clamp(f*scale_exposure, 0.0f, 1.0f);
|
|
}
|
|
}
|
|
#ifdef WITH_CYCLES_DEBUG
|
|
else if(type == PASS_BVH_TRAVERSAL_STEPS) {
|
|
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
|
|
float f = *in;
|
|
pixels[0] = f;
|
|
}
|
|
}
|
|
#endif
|
|
else {
|
|
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
|
|
float f = *in;
|
|
pixels[0] = f*scale_exposure;
|
|
}
|
|
}
|
|
}
|
|
else if(components == 3) {
|
|
assert(pass.components == 4);
|
|
|
|
/* RGBA */
|
|
if(type == PASS_SHADOW) {
|
|
for(int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
|
|
float4 f = make_float4(in[0], in[1], in[2], in[3]);
|
|
float invw = (f.w > 0.0f)? 1.0f/f.w: 1.0f;
|
|
|
|
pixels[0] = f.x*invw;
|
|
pixels[1] = f.y*invw;
|
|
pixels[2] = f.z*invw;
|
|
}
|
|
}
|
|
else if(pass.divide_type != PASS_NONE) {
|
|
/* RGB lighting passes that need to divide out color */
|
|
pass_offset = 0;
|
|
foreach(Pass& color_pass, params.passes) {
|
|
if(color_pass.type == pass.divide_type)
|
|
break;
|
|
pass_offset += color_pass.components;
|
|
}
|
|
|
|
float *in_divide = (float*)buffer.data_pointer + pass_offset;
|
|
|
|
for(int i = 0; i < size; i++, in += pass_stride, in_divide += pass_stride, pixels += 3) {
|
|
float3 f = make_float3(in[0], in[1], in[2]);
|
|
float3 f_divide = make_float3(in_divide[0], in_divide[1], in_divide[2]);
|
|
|
|
f = safe_divide_even_color(f*exposure, f_divide);
|
|
|
|
pixels[0] = f.x;
|
|
pixels[1] = f.y;
|
|
pixels[2] = f.z;
|
|
}
|
|
}
|
|
else {
|
|
/* RGB/vector */
|
|
for(int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
|
|
float3 f = make_float3(in[0], in[1], in[2]);
|
|
|
|
pixels[0] = f.x*scale_exposure;
|
|
pixels[1] = f.y*scale_exposure;
|
|
pixels[2] = f.z*scale_exposure;
|
|
}
|
|
}
|
|
}
|
|
else if(components == 4) {
|
|
assert(pass.components == components);
|
|
|
|
/* RGBA */
|
|
if(type == PASS_SHADOW) {
|
|
for(int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
|
|
float4 f = make_float4(in[0], in[1], in[2], in[3]);
|
|
float invw = (f.w > 0.0f)? 1.0f/f.w: 1.0f;
|
|
|
|
pixels[0] = f.x*invw;
|
|
pixels[1] = f.y*invw;
|
|
pixels[2] = f.z*invw;
|
|
pixels[3] = 1.0f;
|
|
}
|
|
}
|
|
else if(type == PASS_MOTION) {
|
|
/* need to normalize by number of samples accumulated for motion */
|
|
pass_offset = 0;
|
|
foreach(Pass& color_pass, params.passes) {
|
|
if(color_pass.type == PASS_MOTION_WEIGHT)
|
|
break;
|
|
pass_offset += color_pass.components;
|
|
}
|
|
|
|
float *in_weight = (float*)buffer.data_pointer + pass_offset;
|
|
|
|
for(int i = 0; i < size; i++, in += pass_stride, in_weight += pass_stride, pixels += 4) {
|
|
float4 f = make_float4(in[0], in[1], in[2], in[3]);
|
|
float w = in_weight[0];
|
|
float invw = (w > 0.0f)? 1.0f/w: 0.0f;
|
|
|
|
pixels[0] = f.x*invw;
|
|
pixels[1] = f.y*invw;
|
|
pixels[2] = f.z*invw;
|
|
pixels[3] = f.w*invw;
|
|
}
|
|
}
|
|
else {
|
|
for(int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
|
|
float4 f = make_float4(in[0], in[1], in[2], in[3]);
|
|
|
|
pixels[0] = f.x*scale_exposure;
|
|
pixels[1] = f.y*scale_exposure;
|
|
pixels[2] = f.z*scale_exposure;
|
|
|
|
/* clamp since alpha might be > 1.0 due to russian roulette */
|
|
pixels[3] = clamp(f.w*scale, 0.0f, 1.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Display Buffer */
|
|
|
|
DisplayBuffer::DisplayBuffer(Device *device_, bool linear)
|
|
{
|
|
device = device_;
|
|
draw_width = 0;
|
|
draw_height = 0;
|
|
transparent = true; /* todo: determine from background */
|
|
half_float = linear;
|
|
}
|
|
|
|
DisplayBuffer::~DisplayBuffer()
|
|
{
|
|
device_free();
|
|
}
|
|
|
|
void DisplayBuffer::device_free()
|
|
{
|
|
if(rgba_byte.device_pointer) {
|
|
device->pixels_free(rgba_byte);
|
|
rgba_byte.clear();
|
|
}
|
|
if(rgba_half.device_pointer) {
|
|
device->pixels_free(rgba_half);
|
|
rgba_half.clear();
|
|
}
|
|
}
|
|
|
|
void DisplayBuffer::reset(Device *device, BufferParams& params_)
|
|
{
|
|
draw_width = 0;
|
|
draw_height = 0;
|
|
|
|
params = params_;
|
|
|
|
/* free existing buffers */
|
|
device_free();
|
|
|
|
/* allocate display pixels */
|
|
if(half_float) {
|
|
rgba_half.resize(params.width, params.height);
|
|
device->pixels_alloc(rgba_half);
|
|
}
|
|
else {
|
|
rgba_byte.resize(params.width, params.height);
|
|
device->pixels_alloc(rgba_byte);
|
|
}
|
|
}
|
|
|
|
void DisplayBuffer::draw_set(int width, int height)
|
|
{
|
|
assert(width <= params.width && height <= params.height);
|
|
|
|
draw_width = width;
|
|
draw_height = height;
|
|
}
|
|
|
|
void DisplayBuffer::draw(Device *device, const DeviceDrawParams& draw_params)
|
|
{
|
|
if(draw_width != 0 && draw_height != 0) {
|
|
glPushMatrix();
|
|
glTranslatef(params.full_x, params.full_y, 0.0f);
|
|
device_memory& rgba = rgba_data();
|
|
|
|
device->draw_pixels(rgba, 0, draw_width, draw_height, 0, params.width, params.height, transparent, draw_params);
|
|
|
|
glPopMatrix();
|
|
}
|
|
}
|
|
|
|
bool DisplayBuffer::draw_ready()
|
|
{
|
|
return (draw_width != 0 && draw_height != 0);
|
|
}
|
|
|
|
void DisplayBuffer::write(Device *device, const string& filename)
|
|
{
|
|
int w = draw_width;
|
|
int h = draw_height;
|
|
|
|
if(w == 0 || h == 0)
|
|
return;
|
|
|
|
if(half_float)
|
|
return;
|
|
|
|
/* read buffer from device */
|
|
device_memory& rgba = rgba_data();
|
|
device->pixels_copy_from(rgba, 0, w, h);
|
|
|
|
/* write image */
|
|
ImageOutput *out = ImageOutput::create(filename);
|
|
ImageSpec spec(w, h, 4, TypeDesc::UINT8);
|
|
int scanlinesize = w*4*sizeof(uchar);
|
|
|
|
out->open(filename, spec);
|
|
|
|
/* conversion for different top/bottom convention */
|
|
out->write_image(TypeDesc::UINT8,
|
|
(uchar*)rgba.data_pointer + (h-1)*scanlinesize,
|
|
AutoStride,
|
|
-scanlinesize,
|
|
AutoStride);
|
|
|
|
out->close();
|
|
|
|
delete out;
|
|
}
|
|
|
|
device_memory& DisplayBuffer::rgba_data()
|
|
{
|
|
if(half_float)
|
|
return rgba_half;
|
|
else
|
|
return rgba_byte;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|