blender/intern/cycles/kernel/closure/bsdf.h
Brecht Van Lommel 9a1c1f132d Cycles OSL: most closure code is now shared between OSL and SVM. Also fix
transmission pass and filter glossy option.

The BSDF closure class is now more similar to the SVM closures, and includes
some flags and labels that are needed to properly categorize the BSDF's for
render passes. Phong closure is gone for the moment, needs to be adapated to
the new structure still.
2012-10-20 12:18:00 +00:00

138 lines
4.4 KiB
C

/*
* Adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2011, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __OSL_BSDF_H__
#define __OSL_BSDF_H__
CCL_NAMESPACE_BEGIN
__device float fresnel_dielectric(float eta, const float3 N,
const float3 I, float3 *R, float3 *T,
#ifdef __RAY_DIFFERENTIALS__
const float3 dIdx, const float3 dIdy,
float3 *dRdx, float3 *dRdy,
float3 *dTdx, float3 *dTdy,
#endif
bool *is_inside)
{
float cos = dot(N, I), neta;
float3 Nn;
// compute reflection
*R = (2 * cos)* N - I;
#ifdef __RAY_DIFFERENTIALS__
*dRdx = (2 * dot(N, dIdx)) * N - dIdx;
*dRdy = (2 * dot(N, dIdy)) * N - dIdy;
#endif
// check which side of the surface we are on
if(cos > 0) {
// we are on the outside of the surface, going in
neta = 1 / eta;
Nn = N;
*is_inside = false;
}
else {
// we are inside the surface,
cos = -cos;
neta = eta;
Nn = -N;
*is_inside = true;
}
*R = (2 * cos)* Nn - I;
float arg = 1 -(neta * neta *(1 -(cos * cos)));
if(arg < 0) {
*T = make_float3(0.0f, 0.0f, 0.0f);
#ifdef __RAY_DIFFERENTIALS__
*dTdx = make_float3(0.0f, 0.0f, 0.0f);
*dTdy = make_float3(0.0f, 0.0f, 0.0f);
#endif
return 1; // total internal reflection
}
else {
float dnp = sqrtf(arg);
float nK = (neta * cos)- dnp;
*T = -(neta * I)+(nK * Nn);
#ifdef __RAY_DIFFERENTIALS__
*dTdx = -(neta * dIdx) + ((neta - neta * neta * cos / dnp) * dot(dIdx, Nn)) * Nn;
*dTdy = -(neta * dIdy) + ((neta - neta * neta * cos / dnp) * dot(dIdy, Nn)) * Nn;
#endif
// compute Fresnel terms
float cosTheta1 = cos; // N.R
float cosTheta2 = -dot(Nn, *T);
float pPara = (cosTheta1 - eta * cosTheta2)/(cosTheta1 + eta * cosTheta2);
float pPerp = (eta * cosTheta1 - cosTheta2)/(eta * cosTheta1 + cosTheta2);
return 0.5f * (pPara * pPara + pPerp * pPerp);
}
}
__device float fresnel_dielectric_cos(float cosi, float eta)
{
// compute fresnel reflectance without explicitly computing
// the refracted direction
float c = fabsf(cosi);
float g = eta * eta - 1 + c * c;
if(g > 0) {
g = sqrtf(g);
float A = (g - c)/(g + c);
float B = (c *(g + c)- 1)/(c *(g - c)+ 1);
return 0.5f * A * A *(1 + B * B);
}
return 1.0f; // TIR(no refracted component)
}
__device float fresnel_conductor(float cosi, float eta, float k)
{
float tmp_f = eta * eta + k * k;
float tmp = tmp_f * cosi * cosi;
float Rparl2 = (tmp - (2.0f * eta * cosi) + 1)/
(tmp + (2.0f * eta * cosi) + 1);
float Rperp2 = (tmp_f - (2.0f * eta * cosi) + cosi * cosi)/
(tmp_f + (2.0f * eta * cosi) + cosi * cosi);
return(Rparl2 + Rperp2) * 0.5f;
}
__device float smooth_step(float edge0, float edge1, float x)
{
float result;
if(x < edge0) result = 0.0f;
else if(x >= edge1) result = 1.0f;
else {
float t = (x - edge0)/(edge1 - edge0);
result = (3.0f-2.0f*t)*(t*t);
}
return result;
}
CCL_NAMESPACE_END
#endif /* __OSL_BSDF_H__ */