blender/source/gameengine/Ketsji/KX_GameObject.cpp
2009-08-25 22:51:18 +00:00

2840 lines
78 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* Game object wrapper
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#if defined(_WIN64)
typedef unsigned __int64 uint_ptr;
#else
typedef unsigned long uint_ptr;
#endif
#ifdef WIN32
// This warning tells us about truncation of __long__ stl-generated names.
// It can occasionally cause DevStudio to have internal compiler warnings.
#pragma warning( disable : 4786 )
#endif
#define KX_INERTIA_INFINITE 10000
#include "RAS_IPolygonMaterial.h"
#include "KX_BlenderMaterial.h"
#include "KX_GameObject.h"
#include "KX_Camera.h" // only for their ::Type
#include "KX_Light.h" // only for their ::Type
#include "RAS_MeshObject.h"
#include "KX_MeshProxy.h"
#include "KX_PolyProxy.h"
#include <stdio.h> // printf
#include "SG_Controller.h"
#include "KX_IPhysicsController.h"
#include "PHY_IGraphicController.h"
#include "SG_Node.h"
#include "SG_Controller.h"
#include "KX_ClientObjectInfo.h"
#include "RAS_BucketManager.h"
#include "KX_RayCast.h"
#include "KX_PythonInit.h"
#include "KX_PyMath.h"
#include "KX_PythonSeq.h"
#include "KX_ConvertPhysicsObject.h"
#include "SCA_IActuator.h"
#include "SCA_ISensor.h"
#include "SCA_IController.h"
#include "NG_NetworkScene.h" //Needed for sendMessage()
#include "PyObjectPlus.h" /* python stuff */
// This file defines relationships between parents and children
// in the game engine.
#include "KX_SG_NodeRelationships.h"
static MT_Point3 dummy_point= MT_Point3(0.0, 0.0, 0.0);
static MT_Vector3 dummy_scaling = MT_Vector3(1.0, 1.0, 1.0);
static MT_Matrix3x3 dummy_orientation = MT_Matrix3x3( 1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0);
KX_GameObject::KX_GameObject(
void* sgReplicationInfo,
SG_Callbacks callbacks)
: SCA_IObject(),
m_bDyna(false),
m_layer(0),
m_pBlenderObject(NULL),
m_pBlenderGroupObject(NULL),
m_bSuspendDynamics(false),
m_bUseObjectColor(false),
m_bIsNegativeScaling(false),
m_bVisible(true),
m_bCulled(true),
m_bOccluder(false),
m_pPhysicsController1(NULL),
m_pGraphicController(NULL),
m_xray(false),
m_pHitObject(NULL),
m_isDeformable(false),
m_attr_dict(NULL)
{
m_ignore_activity_culling = false;
m_pClient_info = new KX_ClientObjectInfo(this, KX_ClientObjectInfo::ACTOR);
m_pSGNode = new SG_Node(this,sgReplicationInfo,callbacks);
// define the relationship between this node and it's parent.
KX_NormalParentRelation * parent_relation =
KX_NormalParentRelation::New();
m_pSGNode->SetParentRelation(parent_relation);
};
KX_GameObject::~KX_GameObject()
{
RemoveMeshes();
// is this delete somewhere ?
//if (m_sumoObj)
// delete m_sumoObj;
delete m_pClient_info;
//if (m_pSGNode)
// delete m_pSGNode;
if (m_pSGNode)
{
// must go through controllers and make sure they will not use us anymore
// This is important for KX_BulletPhysicsControllers that unregister themselves
// from the object when they are deleted.
SGControllerList::iterator contit;
SGControllerList& controllers = m_pSGNode->GetSGControllerList();
for (contit = controllers.begin();contit!=controllers.end();++contit)
{
(*contit)->ClearObject();
}
m_pSGNode->SetSGClientObject(NULL);
}
if (m_pGraphicController)
{
delete m_pGraphicController;
}
if (m_attr_dict) {
PyDict_Clear(m_attr_dict); /* incase of circular refs or other weired cases */
Py_DECREF(m_attr_dict);
}
}
KX_GameObject* KX_GameObject::GetClientObject(KX_ClientObjectInfo* info)
{
if (!info)
return NULL;
return info->m_gameobject;
}
CValue* KX_GameObject:: Calc(VALUE_OPERATOR op, CValue *val)
{
return NULL;
}
CValue* KX_GameObject::CalcFinal(VALUE_DATA_TYPE dtype, VALUE_OPERATOR op, CValue *val)
{
return NULL;
}
const STR_String & KX_GameObject::GetText()
{
return m_text;
}
double KX_GameObject::GetNumber()
{
return 0;
}
STR_String& KX_GameObject::GetName()
{
return m_name;
}
void KX_GameObject::SetName(const char *name)
{
m_name = name;
}; // Set the name of the value
KX_IPhysicsController* KX_GameObject::GetPhysicsController()
{
return m_pPhysicsController1;
}
KX_GameObject* KX_GameObject::GetParent()
{
KX_GameObject* result = NULL;
SG_Node* node = m_pSGNode;
while (node && !result)
{
node = node->GetSGParent();
if (node)
result = (KX_GameObject*)node->GetSGClientObject();
}
if (result)
result->AddRef();
return result;
}
void KX_GameObject::SetParent(KX_Scene *scene, KX_GameObject* obj, bool addToCompound, bool ghost)
{
// check on valid node in case a python controller holds a reference to a deleted object
if (obj && GetSGNode() && obj->GetSGNode() && GetSGNode()->GetSGParent() != obj->GetSGNode())
{
// Make sure the objects have some scale
MT_Vector3 scale1 = NodeGetWorldScaling();
MT_Vector3 scale2 = obj->NodeGetWorldScaling();
if (fabs(scale2[0]) < FLT_EPSILON ||
fabs(scale2[1]) < FLT_EPSILON ||
fabs(scale2[2]) < FLT_EPSILON ||
fabs(scale1[0]) < FLT_EPSILON ||
fabs(scale1[1]) < FLT_EPSILON ||
fabs(scale1[2]) < FLT_EPSILON) { return; }
// Remove us from our old parent and set our new parent
RemoveParent(scene);
obj->GetSGNode()->AddChild(GetSGNode());
if (m_pPhysicsController1)
{
m_pPhysicsController1->SuspendDynamics(ghost);
}
// Set us to our new scale, position, and orientation
scale2[0] = 1.0/scale2[0];
scale2[1] = 1.0/scale2[1];
scale2[2] = 1.0/scale2[2];
scale1 = scale1 * scale2;
MT_Matrix3x3 invori = obj->NodeGetWorldOrientation().inverse();
MT_Vector3 newpos = invori*(NodeGetWorldPosition()-obj->NodeGetWorldPosition())*scale2;
NodeSetLocalScale(scale1);
NodeSetLocalPosition(MT_Point3(newpos[0],newpos[1],newpos[2]));
NodeSetLocalOrientation(invori*NodeGetWorldOrientation());
NodeUpdateGS(0.f);
// object will now be a child, it must be removed from the parent list
CListValue* rootlist = scene->GetRootParentList();
if (rootlist->RemoveValue(this))
// the object was in parent list, decrement ref count as it's now removed
Release();
// if the new parent is a compound object, add this object shape to the compound shape.
// step 0: verify this object has physical controller
if (m_pPhysicsController1 && addToCompound)
{
// step 1: find the top parent (not necessarily obj)
KX_GameObject* rootobj = (KX_GameObject*)obj->GetSGNode()->GetRootSGParent()->GetSGClientObject();
// step 2: verify it has a physical controller and compound shape
if (rootobj != NULL &&
rootobj->m_pPhysicsController1 != NULL &&
rootobj->m_pPhysicsController1->IsCompound())
{
rootobj->m_pPhysicsController1->AddCompoundChild(m_pPhysicsController1);
}
}
// graphically, the object hasn't change place, no need to update m_pGraphicController
}
}
void KX_GameObject::RemoveParent(KX_Scene *scene)
{
// check on valid node in case a python controller holds a reference to a deleted object
if (GetSGNode() && GetSGNode()->GetSGParent())
{
// get the root object to remove us from compound object if needed
KX_GameObject* rootobj = (KX_GameObject*)GetSGNode()->GetRootSGParent()->GetSGClientObject();
// Set us to the right spot
GetSGNode()->SetLocalScale(GetSGNode()->GetWorldScaling());
GetSGNode()->SetLocalOrientation(GetSGNode()->GetWorldOrientation());
GetSGNode()->SetLocalPosition(GetSGNode()->GetWorldPosition());
// Remove us from our parent
GetSGNode()->DisconnectFromParent();
NodeUpdateGS(0.f);
// the object is now a root object, add it to the parentlist
CListValue* rootlist = scene->GetRootParentList();
if (!rootlist->SearchValue(this))
// object was not in root list, add it now and increment ref count
rootlist->Add(AddRef());
if (m_pPhysicsController1)
{
// in case this controller was added as a child shape to the parent
if (rootobj != NULL &&
rootobj->m_pPhysicsController1 != NULL &&
rootobj->m_pPhysicsController1->IsCompound())
{
rootobj->m_pPhysicsController1->RemoveCompoundChild(m_pPhysicsController1);
}
m_pPhysicsController1->RestoreDynamics();
if (m_pPhysicsController1->IsDyna() && rootobj->m_pPhysicsController1)
{
// dynamic object should remember the velocity they had while being parented
MT_Point3 childPoint = GetSGNode()->GetWorldPosition();
MT_Point3 rootPoint = rootobj->GetSGNode()->GetWorldPosition();
MT_Point3 relPoint;
relPoint = (childPoint-rootPoint);
MT_Vector3 linVel = rootobj->m_pPhysicsController1->GetVelocity(relPoint);
MT_Vector3 angVel = rootobj->m_pPhysicsController1->GetAngularVelocity();
m_pPhysicsController1->SetLinearVelocity(linVel, false);
m_pPhysicsController1->SetAngularVelocity(angVel, false);
}
}
// graphically, the object hasn't change place, no need to update m_pGraphicController
}
}
void KX_GameObject::ProcessReplica()
{
SCA_IObject::ProcessReplica();
m_pPhysicsController1 = NULL;
m_pGraphicController = NULL;
m_pSGNode = NULL;
m_pClient_info = new KX_ClientObjectInfo(*m_pClient_info);
m_pClient_info->m_gameobject = this;
m_state = 0;
if(m_attr_dict)
m_attr_dict= PyDict_Copy(m_attr_dict);
}
static void setGraphicController_recursive(SG_Node* node)
{
NodeList& children = node->GetSGChildren();
for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit)
{
SG_Node* childnode = (*childit);
KX_GameObject *clientgameobj = static_cast<KX_GameObject*>( (*childit)->GetSGClientObject());
if (clientgameobj != NULL) // This is a GameObject
clientgameobj->ActivateGraphicController(false);
// if the childobj is NULL then this may be an inverse parent link
// so a non recursive search should still look down this node.
setGraphicController_recursive(childnode);
}
}
void KX_GameObject::ActivateGraphicController(bool recurse)
{
if (m_pGraphicController)
{
m_pGraphicController->Activate(m_bVisible);
}
if (recurse)
{
setGraphicController_recursive(GetSGNode());
}
}
CValue* KX_GameObject::GetReplica()
{
KX_GameObject* replica = new KX_GameObject(*this);
// this will copy properties and so on...
replica->ProcessReplica();
return replica;
}
void KX_GameObject::ApplyForce(const MT_Vector3& force,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->ApplyForce(force,local);
}
void KX_GameObject::ApplyTorque(const MT_Vector3& torque,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->ApplyTorque(torque,local);
}
void KX_GameObject::ApplyMovement(const MT_Vector3& dloc,bool local)
{
if (GetSGNode())
{
if (m_pPhysicsController1) // (IsDynamic())
{
m_pPhysicsController1->RelativeTranslate(dloc,local);
}
GetSGNode()->RelativeTranslate(dloc,GetSGNode()->GetSGParent(),local);
}
}
void KX_GameObject::ApplyRotation(const MT_Vector3& drot,bool local)
{
MT_Matrix3x3 rotmat(drot);
if (GetSGNode()) {
GetSGNode()->RelativeRotate(rotmat,local);
if (m_pPhysicsController1) { // (IsDynamic())
m_pPhysicsController1->RelativeRotate(rotmat,local);
}
}
}
/**
GetOpenGL Matrix, returns an OpenGL 'compatible' matrix
*/
double* KX_GameObject::GetOpenGLMatrix()
{
// todo: optimize and only update if necessary
double* fl = m_OpenGL_4x4Matrix.getPointer();
if (GetSGNode()) {
MT_Transform trans;
trans.setOrigin(GetSGNode()->GetWorldPosition());
trans.setBasis(GetSGNode()->GetWorldOrientation());
MT_Vector3 scaling = GetSGNode()->GetWorldScaling();
m_bIsNegativeScaling = ((scaling[0] < 0.0) ^ (scaling[1] < 0.0) ^ (scaling[2] < 0.0)) ? true : false;
trans.scale(scaling[0], scaling[1], scaling[2]);
trans.getValue(fl);
GetSGNode()->ClearDirty();
}
return fl;
}
void KX_GameObject::AddMeshUser()
{
for (size_t i=0;i<m_meshes.size();i++)
{
m_meshes[i]->AddMeshUser(this, &m_meshSlots, GetDeformer());
}
// set the part of the mesh slot that never change
double* fl = GetOpenGLMatrixPtr()->getPointer();
SG_QList::iterator<RAS_MeshSlot> mit(m_meshSlots);
// RAS_MeshSlot* ms;
for(mit.begin(); !mit.end(); ++mit)
{
(*mit)->m_OpenGLMatrix = fl;
}
UpdateBuckets(false);
}
static void UpdateBuckets_recursive(SG_Node* node)
{
NodeList& children = node->GetSGChildren();
for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit)
{
SG_Node* childnode = (*childit);
KX_GameObject *clientgameobj = static_cast<KX_GameObject*>( (*childit)->GetSGClientObject());
if (clientgameobj != NULL) // This is a GameObject
clientgameobj->UpdateBuckets(0);
// if the childobj is NULL then this may be an inverse parent link
// so a non recursive search should still look down this node.
UpdateBuckets_recursive(childnode);
}
}
void KX_GameObject::UpdateBuckets( bool recursive )
{
if (GetSGNode()) {
RAS_MeshSlot *ms;
if (GetSGNode()->IsDirty())
GetOpenGLMatrix();
SG_QList::iterator<RAS_MeshSlot> mit(m_meshSlots);
for(mit.begin(); !mit.end(); ++mit)
{
ms = *mit;
ms->m_bObjectColor = m_bUseObjectColor;
ms->m_RGBAcolor = m_objectColor;
ms->m_bVisible = m_bVisible;
ms->m_bCulled = m_bCulled || !m_bVisible;
if (!ms->m_bCulled)
ms->m_bucket->ActivateMesh(ms);
/* split if necessary */
#ifdef USE_SPLIT
ms->Split();
#endif
}
if (recursive) {
UpdateBuckets_recursive(GetSGNode());
}
}
}
void KX_GameObject::RemoveMeshes()
{
for (size_t i=0;i<m_meshes.size();i++)
m_meshes[i]->RemoveFromBuckets(this);
//note: meshes can be shared, and are deleted by KX_BlenderSceneConverter
m_meshes.clear();
}
void KX_GameObject::UpdateTransform()
{
// HACK: saves function call for dynamic object, they are handled differently
if (m_pPhysicsController1 && !m_pPhysicsController1->IsDyna())
// Note that for Bullet, this does not even update the transform of static object
// but merely sets there collision flag to "kinematic" because the synchronization is
// done during physics simulation
m_pPhysicsController1->SetSumoTransform(true);
if (m_pGraphicController)
// update the culling tree
m_pGraphicController->SetGraphicTransform();
}
void KX_GameObject::UpdateTransformFunc(SG_IObject* node, void* gameobj, void* scene)
{
((KX_GameObject*)gameobj)->UpdateTransform();
}
void KX_GameObject::SynchronizeTransform()
{
// only used for sensor object, do full synchronization as bullet doesn't do it
if (m_pPhysicsController1)
m_pPhysicsController1->SetTransform();
if (m_pGraphicController)
m_pGraphicController->SetGraphicTransform();
}
void KX_GameObject::SynchronizeTransformFunc(SG_IObject* node, void* gameobj, void* scene)
{
((KX_GameObject*)gameobj)->SynchronizeTransform();
}
void KX_GameObject::SetDebugColor(unsigned int bgra)
{
for (size_t i=0;i<m_meshes.size();i++)
m_meshes[i]->DebugColor(bgra);
}
void KX_GameObject::ResetDebugColor()
{
SetDebugColor(0xff000000);
}
void KX_GameObject::InitIPO(bool ipo_as_force,
bool ipo_add,
bool ipo_local)
{
SGControllerList::iterator it = GetSGNode()->GetSGControllerList().begin();
while (it != GetSGNode()->GetSGControllerList().end()) {
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_RESET, true);
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_IPO_AS_FORCE, ipo_as_force);
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_IPO_ADD, ipo_add);
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_LOCAL, ipo_local);
it++;
}
}
void KX_GameObject::UpdateIPO(float curframetime,
bool recurse)
{
// just the 'normal' update procedure.
GetSGNode()->SetSimulatedTime(curframetime,recurse);
GetSGNode()->UpdateWorldData(curframetime);
UpdateTransform();
}
// IPO update
void
KX_GameObject::UpdateMaterialData(
dword matname_hash,
MT_Vector4 rgba,
MT_Vector3 specrgb,
MT_Scalar hard,
MT_Scalar spec,
MT_Scalar ref,
MT_Scalar emit,
MT_Scalar alpha
)
{
int mesh = 0;
if (((unsigned int)mesh < m_meshes.size()) && mesh >= 0) {
list<RAS_MeshMaterial>::iterator mit = m_meshes[mesh]->GetFirstMaterial();
for(; mit != m_meshes[mesh]->GetLastMaterial(); ++mit)
{
RAS_IPolyMaterial* poly = mit->m_bucket->GetPolyMaterial();
if(poly->GetFlag() & RAS_BLENDERMAT )
{
KX_BlenderMaterial *m = static_cast<KX_BlenderMaterial*>(poly);
if (matname_hash == 0)
{
m->UpdateIPO(rgba, specrgb,hard,spec,ref,emit, alpha);
// if mesh has only one material attached to it then use original hack with no need to edit vertices (better performance)
SetObjectColor(rgba);
}
else
{
if (matname_hash == poly->GetMaterialNameHash())
{
m->UpdateIPO(rgba, specrgb,hard,spec,ref,emit, alpha);
m_meshes[mesh]->SetVertexColor(poly,rgba);
// no break here, because one blender material can be split into several game engine materials
// (e.g. one uvsphere material is split into one material at poles with ras_mode TRIANGLE and one material for the body
// if here was a break then would miss some vertices if material was split
}
}
}
}
}
}
bool
KX_GameObject::GetVisible(
void
)
{
return m_bVisible;
}
static void setVisible_recursive(SG_Node* node, bool v)
{
NodeList& children = node->GetSGChildren();
for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit)
{
SG_Node* childnode = (*childit);
KX_GameObject *clientgameobj = static_cast<KX_GameObject*>( (*childit)->GetSGClientObject());
if (clientgameobj != NULL) // This is a GameObject
clientgameobj->SetVisible(v, 0);
// if the childobj is NULL then this may be an inverse parent link
// so a non recursive search should still look down this node.
setVisible_recursive(childnode, v);
}
}
void
KX_GameObject::SetVisible(
bool v,
bool recursive
)
{
if (GetSGNode()) {
m_bVisible = v;
if (m_pGraphicController)
m_pGraphicController->Activate(m_bVisible);
if (recursive)
setVisible_recursive(GetSGNode(), v);
}
}
static void setOccluder_recursive(SG_Node* node, bool v)
{
NodeList& children = node->GetSGChildren();
for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit)
{
SG_Node* childnode = (*childit);
KX_GameObject *clientgameobj = static_cast<KX_GameObject*>( (*childit)->GetSGClientObject());
if (clientgameobj != NULL) // This is a GameObject
clientgameobj->SetOccluder(v, false);
// if the childobj is NULL then this may be an inverse parent link
// so a non recursive search should still look down this node.
setOccluder_recursive(childnode, v);
}
}
void
KX_GameObject::SetOccluder(
bool v,
bool recursive
)
{
if (GetSGNode()) {
m_bOccluder = v;
if (recursive)
setOccluder_recursive(GetSGNode(), v);
}
}
void
KX_GameObject::SetLayer(
int l
)
{
m_layer = l;
}
int
KX_GameObject::GetLayer(
void
)
{
return m_layer;
}
void KX_GameObject::addLinearVelocity(const MT_Vector3& lin_vel,bool local)
{
if (m_pPhysicsController1)
{
MT_Vector3 lv = local ? NodeGetWorldOrientation() * lin_vel : lin_vel;
m_pPhysicsController1->SetLinearVelocity(lv + m_pPhysicsController1->GetLinearVelocity(), 0);
}
}
void KX_GameObject::setLinearVelocity(const MT_Vector3& lin_vel,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->SetLinearVelocity(lin_vel,local);
}
void KX_GameObject::setAngularVelocity(const MT_Vector3& ang_vel,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->SetAngularVelocity(ang_vel,local);
}
void KX_GameObject::ResolveCombinedVelocities(
const MT_Vector3 & lin_vel,
const MT_Vector3 & ang_vel,
bool lin_vel_local,
bool ang_vel_local
){
if (m_pPhysicsController1)
{
MT_Vector3 lv = lin_vel_local ? NodeGetWorldOrientation() * lin_vel : lin_vel;
MT_Vector3 av = ang_vel_local ? NodeGetWorldOrientation() * ang_vel : ang_vel;
m_pPhysicsController1->resolveCombinedVelocities(
lv.x(),lv.y(),lv.z(),av.x(),av.y(),av.z());
}
}
void KX_GameObject::SetObjectColor(const MT_Vector4& rgbavec)
{
m_bUseObjectColor = true;
m_objectColor = rgbavec;
}
void KX_GameObject::AlignAxisToVect(const MT_Vector3& dir, int axis, float fac)
{
MT_Matrix3x3 orimat;
MT_Vector3 vect,ori,z,x,y;
MT_Scalar len;
// check on valid node in case a python controller holds a reference to a deleted object
if (!GetSGNode())
return;
vect = dir;
len = vect.length();
if (MT_fuzzyZero(len))
{
cout << "alignAxisToVect() Error: Null vector!\n";
return;
}
if (fac<=0.0) {
return;
}
// normalize
vect /= len;
orimat = GetSGNode()->GetWorldOrientation();
switch (axis)
{
case 0: //x axis
ori.setValue(orimat[0][2], orimat[1][2], orimat[2][2]); //pivot axis
if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON) //is the vector paralell to the pivot?
ori.setValue(orimat[0][1], orimat[1][1], orimat[2][1]); //change the pivot!
if (fac == 1.0) {
x = vect;
} else {
x = (vect * fac) + ((orimat * MT_Vector3(1.0, 0.0, 0.0)) * (1-fac));
len = x.length();
if (MT_fuzzyZero(len)) x = vect;
else x /= len;
}
y = ori.cross(x);
z = x.cross(y);
break;
case 1: //y axis
ori.setValue(orimat[0][0], orimat[1][0], orimat[2][0]);
if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON)
ori.setValue(orimat[0][2], orimat[1][2], orimat[2][2]);
if (fac == 1.0) {
y = vect;
} else {
y = (vect * fac) + ((orimat * MT_Vector3(0.0, 1.0, 0.0)) * (1-fac));
len = y.length();
if (MT_fuzzyZero(len)) y = vect;
else y /= len;
}
z = ori.cross(y);
x = y.cross(z);
break;
case 2: //z axis
ori.setValue(orimat[0][1], orimat[1][1], orimat[2][1]);
if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON)
ori.setValue(orimat[0][0], orimat[1][0], orimat[2][0]);
if (fac == 1.0) {
z = vect;
} else {
z = (vect * fac) + ((orimat * MT_Vector3(0.0, 0.0, 1.0)) * (1-fac));
len = z.length();
if (MT_fuzzyZero(len)) z = vect;
else z /= len;
}
x = ori.cross(z);
y = z.cross(x);
break;
default: //wrong input?
cout << "alignAxisToVect(): Wrong axis '" << axis <<"'\n";
return;
}
x.normalize(); //normalize the vectors
y.normalize();
z.normalize();
orimat.setValue( x[0],y[0],z[0],
x[1],y[1],z[1],
x[2],y[2],z[2]);
if (GetSGNode()->GetSGParent() != NULL)
{
// the object is a child, adapt its local orientation so that
// the global orientation is aligned as we want.
MT_Matrix3x3 invori = GetSGNode()->GetSGParent()->GetWorldOrientation().inverse();
NodeSetLocalOrientation(invori*orimat);
}
else
NodeSetLocalOrientation(orimat);
}
MT_Scalar KX_GameObject::GetMass()
{
if (m_pPhysicsController1)
{
return m_pPhysicsController1->GetMass();
}
return 0.0;
}
MT_Vector3 KX_GameObject::GetLocalInertia()
{
MT_Vector3 local_inertia(0.0,0.0,0.0);
if (m_pPhysicsController1)
{
local_inertia = m_pPhysicsController1->GetLocalInertia();
}
return local_inertia;
}
MT_Vector3 KX_GameObject::GetLinearVelocity(bool local)
{
MT_Vector3 velocity(0.0,0.0,0.0), locvel;
MT_Matrix3x3 ori;
if (m_pPhysicsController1)
{
velocity = m_pPhysicsController1->GetLinearVelocity();
if (local)
{
ori = GetSGNode()->GetWorldOrientation();
locvel = velocity * ori;
return locvel;
}
}
return velocity;
}
MT_Vector3 KX_GameObject::GetAngularVelocity(bool local)
{
MT_Vector3 velocity(0.0,0.0,0.0), locvel;
MT_Matrix3x3 ori;
if (m_pPhysicsController1)
{
velocity = m_pPhysicsController1->GetAngularVelocity();
if (local)
{
ori = GetSGNode()->GetWorldOrientation();
locvel = velocity * ori;
return locvel;
}
}
return velocity;
}
MT_Vector3 KX_GameObject::GetVelocity(const MT_Point3& point)
{
if (m_pPhysicsController1)
{
return m_pPhysicsController1->GetVelocity(point);
}
return MT_Vector3(0.0,0.0,0.0);
}
// scenegraph node stuff
void KX_GameObject::NodeSetLocalPosition(const MT_Point3& trans)
{
// check on valid node in case a python controller holds a reference to a deleted object
if (!GetSGNode())
return;
if (m_pPhysicsController1 && !GetSGNode()->GetSGParent())
{
// don't update physic controller if the object is a child:
// 1) the transformation will not be right
// 2) in this case, the physic controller is necessarily a static object
// that is updated from the normal kinematic synchronization
m_pPhysicsController1->setPosition(trans);
}
GetSGNode()->SetLocalPosition(trans);
}
void KX_GameObject::NodeSetLocalOrientation(const MT_Matrix3x3& rot)
{
// check on valid node in case a python controller holds a reference to a deleted object
if (!GetSGNode())
return;
if (m_pPhysicsController1 && !GetSGNode()->GetSGParent())
{
// see note above
m_pPhysicsController1->setOrientation(rot);
}
GetSGNode()->SetLocalOrientation(rot);
}
void KX_GameObject::NodeSetGlobalOrientation(const MT_Matrix3x3& rot)
{
// check on valid node in case a python controller holds a reference to a deleted object
if (!GetSGNode())
return;
if (GetSGNode()->GetSGParent())
GetSGNode()->SetLocalOrientation(GetSGNode()->GetSGParent()->GetWorldOrientation().inverse()*rot);
else
GetSGNode()->SetLocalOrientation(rot);
}
void KX_GameObject::NodeSetLocalScale(const MT_Vector3& scale)
{
// check on valid node in case a python controller holds a reference to a deleted object
if (!GetSGNode())
return;
if (m_pPhysicsController1 && !GetSGNode()->GetSGParent())
{
// see note above
m_pPhysicsController1->setScaling(scale);
}
GetSGNode()->SetLocalScale(scale);
}
void KX_GameObject::NodeSetRelativeScale(const MT_Vector3& scale)
{
if (GetSGNode())
{
GetSGNode()->RelativeScale(scale);
if (m_pPhysicsController1 && (!GetSGNode()->GetSGParent()))
{
// see note above
// we can use the local scale: it's the same thing for a root object
// and the world scale is not yet updated
MT_Vector3 newscale = GetSGNode()->GetLocalScale();
m_pPhysicsController1->setScaling(newscale);
}
}
}
void KX_GameObject::NodeSetWorldPosition(const MT_Point3& trans)
{
if (!GetSGNode())
return;
SG_Node* parent = GetSGNode()->GetSGParent();
if (parent != NULL)
{
// Make sure the objects have some scale
MT_Vector3 scale = parent->GetWorldScaling();
if (fabs(scale[0]) < FLT_EPSILON ||
fabs(scale[1]) < FLT_EPSILON ||
fabs(scale[2]) < FLT_EPSILON)
{
return;
}
scale[0] = 1.0/scale[0];
scale[1] = 1.0/scale[1];
scale[2] = 1.0/scale[2];
MT_Matrix3x3 invori = parent->GetWorldOrientation().inverse();
MT_Vector3 newpos = invori*(trans-parent->GetWorldPosition())*scale;
NodeSetLocalPosition(MT_Point3(newpos[0],newpos[1],newpos[2]));
}
else
{
NodeSetLocalPosition(trans);
}
}
void KX_GameObject::NodeUpdateGS(double time)
{
if (GetSGNode())
GetSGNode()->UpdateWorldData(time);
}
const MT_Matrix3x3& KX_GameObject::NodeGetWorldOrientation() const
{
// check on valid node in case a python controller holds a reference to a deleted object
if (!GetSGNode())
return dummy_orientation;
return GetSGNode()->GetWorldOrientation();
}
const MT_Matrix3x3& KX_GameObject::NodeGetLocalOrientation() const
{
// check on valid node in case a python controller holds a reference to a deleted object
if (!GetSGNode())
return dummy_orientation;
return GetSGNode()->GetLocalOrientation();
}
const MT_Vector3& KX_GameObject::NodeGetWorldScaling() const
{
// check on valid node in case a python controller holds a reference to a deleted object
if (!GetSGNode())
return dummy_scaling;
return GetSGNode()->GetWorldScaling();
}
const MT_Vector3& KX_GameObject::NodeGetLocalScaling() const
{
// check on valid node in case a python controller holds a reference to a deleted object
if (!GetSGNode())
return dummy_scaling;
return GetSGNode()->GetLocalScale();
}
const MT_Point3& KX_GameObject::NodeGetWorldPosition() const
{
// check on valid node in case a python controller holds a reference to a deleted object
if (GetSGNode())
return GetSGNode()->GetWorldPosition();
else
return dummy_point;
}
const MT_Point3& KX_GameObject::NodeGetLocalPosition() const
{
// check on valid node in case a python controller holds a reference to a deleted object
if (GetSGNode())
return GetSGNode()->GetLocalPosition();
else
return dummy_point;
}
/* Suspend/ resume: for the dynamic behaviour, there is a simple
* method. For the residual motion, there is not. I wonder what the
* correct solution is for Sumo. Remove from the motion-update tree?
*
* So far, only switch the physics and logic.
* */
void KX_GameObject::Resume(void)
{
if (m_suspended) {
SCA_IObject::Resume();
if(GetPhysicsController())
GetPhysicsController()->RestoreDynamics();
m_suspended = false;
}
}
void KX_GameObject::Suspend()
{
if ((!m_ignore_activity_culling)
&& (!m_suspended)) {
SCA_IObject::Suspend();
if(GetPhysicsController())
GetPhysicsController()->SuspendDynamics();
m_suspended = true;
}
}
static void walk_children(SG_Node* node, CListValue* list, bool recursive)
{
if (!node)
return;
NodeList& children = node->GetSGChildren();
for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit)
{
SG_Node* childnode = (*childit);
CValue* childobj = (CValue*)childnode->GetSGClientObject();
if (childobj != NULL) // This is a GameObject
{
// add to the list
list->Add(childobj->AddRef());
}
// if the childobj is NULL then this may be an inverse parent link
// so a non recursive search should still look down this node.
if (recursive || childobj==NULL) {
walk_children(childnode, list, recursive);
}
}
}
CListValue* KX_GameObject::GetChildren()
{
CListValue* list = new CListValue();
walk_children(GetSGNode(), list, 0); /* GetSGNode() is always valid or it would have raised an exception before this */
return list;
}
CListValue* KX_GameObject::GetChildrenRecursive()
{
CListValue* list = new CListValue();
walk_children(GetSGNode(), list, 1);
return list;
}
#ifdef USE_MATHUTILS
/* These require an SGNode */
#define MATHUTILS_VEC_CB_POS_LOCAL 1
#define MATHUTILS_VEC_CB_POS_GLOBAL 2
#define MATHUTILS_VEC_CB_SCALE_LOCAL 3
#define MATHUTILS_VEC_CB_SCALE_GLOBAL 4
#define MATHUTILS_VEC_CB_INERTIA_LOCAL 5
static int mathutils_kxgameob_vector_cb_index= -1; /* index for our callbacks */
static int mathutils_kxgameob_generic_check(PyObject *self_v)
{
KX_GameObject* self= static_cast<KX_GameObject*>BGE_PROXY_REF(self_v);
if(self==NULL)
return 0;
return 1;
}
static int mathutils_kxgameob_vector_get(PyObject *self_v, int subtype, float *vec_from)
{
KX_GameObject* self= static_cast<KX_GameObject*>BGE_PROXY_REF(self_v);
if(self==NULL)
return 0;
switch(subtype) {
case MATHUTILS_VEC_CB_POS_LOCAL:
self->NodeGetLocalPosition().getValue(vec_from);
break;
case MATHUTILS_VEC_CB_POS_GLOBAL:
self->NodeGetWorldPosition().getValue(vec_from);
break;
case MATHUTILS_VEC_CB_SCALE_LOCAL:
self->NodeGetLocalScaling().getValue(vec_from);
break;
case MATHUTILS_VEC_CB_SCALE_GLOBAL:
self->NodeGetWorldScaling().getValue(vec_from);
break;
case MATHUTILS_VEC_CB_INERTIA_LOCAL:
if(!self->GetPhysicsController()) return 0;
self->GetPhysicsController()->GetLocalInertia().getValue(vec_from);
break;
}
return 1;
}
static int mathutils_kxgameob_vector_set(PyObject *self_v, int subtype, float *vec_to)
{
KX_GameObject* self= static_cast<KX_GameObject*>BGE_PROXY_REF(self_v);
if(self==NULL)
return 0;
switch(subtype) {
case MATHUTILS_VEC_CB_POS_LOCAL:
self->NodeSetLocalPosition(MT_Point3(vec_to));
self->NodeUpdateGS(0.f);
break;
case MATHUTILS_VEC_CB_POS_GLOBAL:
self->NodeSetWorldPosition(MT_Point3(vec_to));
self->NodeUpdateGS(0.f);
break;
case MATHUTILS_VEC_CB_SCALE_LOCAL:
self->NodeSetLocalScale(MT_Point3(vec_to));
self->NodeUpdateGS(0.f);
break;
case MATHUTILS_VEC_CB_SCALE_GLOBAL:
break;
case MATHUTILS_VEC_CB_INERTIA_LOCAL:
/* read only */
break;
}
return 1;
}
static int mathutils_kxgameob_vector_get_index(PyObject *self_v, int subtype, float *vec_from, int index)
{
float f[4];
/* lazy, avoid repeteing the case statement */
if(!mathutils_kxgameob_vector_get(self_v, subtype, f))
return 0;
vec_from[index]= f[index];
return 1;
}
static int mathutils_kxgameob_vector_set_index(PyObject *self_v, int subtype, float *vec_to, int index)
{
float f= vec_to[index];
/* lazy, avoid repeteing the case statement */
if(!mathutils_kxgameob_vector_get(self_v, subtype, vec_to))
return 0;
vec_to[index]= f;
mathutils_kxgameob_vector_set(self_v, subtype, vec_to);
return 1;
}
Mathutils_Callback mathutils_kxgameob_vector_cb = {
mathutils_kxgameob_generic_check,
mathutils_kxgameob_vector_get,
mathutils_kxgameob_vector_set,
mathutils_kxgameob_vector_get_index,
mathutils_kxgameob_vector_set_index
};
/* Matrix */
#define MATHUTILS_MAT_CB_ORI_LOCAL 1
#define MATHUTILS_MAT_CB_ORI_GLOBAL 2
static int mathutils_kxgameob_matrix_cb_index= -1; /* index for our callbacks */
static int mathutils_kxgameob_matrix_get(PyObject *self_v, int subtype, float *mat_from)
{
KX_GameObject* self= static_cast<KX_GameObject*>BGE_PROXY_REF(self_v);
if(self==NULL)
return 0;
switch(subtype) {
case MATHUTILS_MAT_CB_ORI_LOCAL:
self->NodeGetLocalOrientation().getValue3x3(mat_from);
break;
case MATHUTILS_MAT_CB_ORI_GLOBAL:
self->NodeGetWorldOrientation().getValue3x3(mat_from);
break;
}
return 1;
}
static int mathutils_kxgameob_matrix_set(PyObject *self_v, int subtype, float *mat_to)
{
KX_GameObject* self= static_cast<KX_GameObject*>BGE_PROXY_REF(self_v);
if(self==NULL)
return 0;
MT_Matrix3x3 mat3x3;
switch(subtype) {
case MATHUTILS_MAT_CB_ORI_LOCAL:
mat3x3.setValue3x3(mat_to);
self->NodeSetLocalOrientation(mat3x3);
self->NodeUpdateGS(0.f);
break;
case MATHUTILS_MAT_CB_ORI_GLOBAL:
mat3x3.setValue3x3(mat_to);
self->NodeSetLocalOrientation(mat3x3);
self->NodeUpdateGS(0.f);
break;
}
return 1;
}
Mathutils_Callback mathutils_kxgameob_matrix_cb = {
mathutils_kxgameob_generic_check,
mathutils_kxgameob_matrix_get,
mathutils_kxgameob_matrix_set,
NULL,
NULL
};
void KX_GameObject_Mathutils_Callback_Init(void)
{
// register mathutils callbacks, ok to run more then once.
mathutils_kxgameob_vector_cb_index= Mathutils_RegisterCallback(&mathutils_kxgameob_vector_cb);
mathutils_kxgameob_matrix_cb_index= Mathutils_RegisterCallback(&mathutils_kxgameob_matrix_cb);
}
#endif // USE_MATHUTILS
/* ------- python stuff ---------------------------------------------------*/
PyMethodDef KX_GameObject::Methods[] = {
{"applyForce", (PyCFunction) KX_GameObject::sPyApplyForce, METH_VARARGS},
{"applyTorque", (PyCFunction) KX_GameObject::sPyApplyTorque, METH_VARARGS},
{"applyRotation", (PyCFunction) KX_GameObject::sPyApplyRotation, METH_VARARGS},
{"applyMovement", (PyCFunction) KX_GameObject::sPyApplyMovement, METH_VARARGS},
{"getLinearVelocity", (PyCFunction) KX_GameObject::sPyGetLinearVelocity, METH_VARARGS},
{"setLinearVelocity", (PyCFunction) KX_GameObject::sPySetLinearVelocity, METH_VARARGS},
{"getAngularVelocity", (PyCFunction) KX_GameObject::sPyGetAngularVelocity, METH_VARARGS},
{"setAngularVelocity", (PyCFunction) KX_GameObject::sPySetAngularVelocity, METH_VARARGS},
{"getVelocity", (PyCFunction) KX_GameObject::sPyGetVelocity, METH_VARARGS},
{"getReactionForce", (PyCFunction) KX_GameObject::sPyGetReactionForce, METH_NOARGS},
{"alignAxisToVect",(PyCFunction) KX_GameObject::sPyAlignAxisToVect, METH_VARARGS},
{"getAxisVect",(PyCFunction) KX_GameObject::sPyGetAxisVect, METH_O},
{"suspendDynamics", (PyCFunction)KX_GameObject::sPySuspendDynamics,METH_NOARGS},
{"restoreDynamics", (PyCFunction)KX_GameObject::sPyRestoreDynamics,METH_NOARGS},
{"enableRigidBody", (PyCFunction)KX_GameObject::sPyEnableRigidBody,METH_NOARGS},
{"disableRigidBody", (PyCFunction)KX_GameObject::sPyDisableRigidBody,METH_NOARGS},
{"applyImpulse", (PyCFunction) KX_GameObject::sPyApplyImpulse, METH_VARARGS},
{"setCollisionMargin", (PyCFunction) KX_GameObject::sPySetCollisionMargin, METH_O},
{"setParent", (PyCFunction)KX_GameObject::sPySetParent,METH_VARARGS},
{"setVisible",(PyCFunction) KX_GameObject::sPySetVisible, METH_VARARGS},
{"setOcclusion",(PyCFunction) KX_GameObject::sPySetOcclusion, METH_VARARGS},
{"removeParent", (PyCFunction)KX_GameObject::sPyRemoveParent,METH_NOARGS},
{"getPhysicsId", (PyCFunction)KX_GameObject::sPyGetPhysicsId,METH_NOARGS},
{"getPropertyNames", (PyCFunction)KX_GameObject::sPyGetPropertyNames,METH_NOARGS},
{"replaceMesh",(PyCFunction) KX_GameObject::sPyReplaceMesh, METH_VARARGS},
{"endObject",(PyCFunction) KX_GameObject::sPyEndObject, METH_NOARGS},
{"reinstancePhysicsMesh", (PyCFunction)KX_GameObject::sPyReinstancePhysicsMesh,METH_VARARGS},
KX_PYMETHODTABLE(KX_GameObject, rayCastTo),
KX_PYMETHODTABLE(KX_GameObject, rayCast),
KX_PYMETHODTABLE_O(KX_GameObject, getDistanceTo),
KX_PYMETHODTABLE_O(KX_GameObject, getVectTo),
KX_PYMETHODTABLE(KX_GameObject, sendMessage),
// dict style access for props
{"get",(PyCFunction) KX_GameObject::sPyget, METH_VARARGS},
{NULL,NULL} //Sentinel
};
PyAttributeDef KX_GameObject::Attributes[] = {
KX_PYATTRIBUTE_RO_FUNCTION("name", KX_GameObject, pyattr_get_name),
KX_PYATTRIBUTE_RO_FUNCTION("parent", KX_GameObject, pyattr_get_parent),
KX_PYATTRIBUTE_RW_FUNCTION("mass", KX_GameObject, pyattr_get_mass, pyattr_set_mass),
KX_PYATTRIBUTE_RW_FUNCTION("linVelocityMin", KX_GameObject, pyattr_get_lin_vel_min, pyattr_set_lin_vel_min),
KX_PYATTRIBUTE_RW_FUNCTION("linVelocityMax", KX_GameObject, pyattr_get_lin_vel_max, pyattr_set_lin_vel_max),
KX_PYATTRIBUTE_RW_FUNCTION("visible", KX_GameObject, pyattr_get_visible, pyattr_set_visible),
KX_PYATTRIBUTE_BOOL_RW ("occlusion", KX_GameObject, m_bOccluder),
KX_PYATTRIBUTE_RW_FUNCTION("position", KX_GameObject, pyattr_get_worldPosition, pyattr_set_localPosition),
KX_PYATTRIBUTE_RO_FUNCTION("localInertia", KX_GameObject, pyattr_get_localInertia),
KX_PYATTRIBUTE_RW_FUNCTION("orientation",KX_GameObject,pyattr_get_worldOrientation,pyattr_set_localOrientation),
KX_PYATTRIBUTE_RW_FUNCTION("scaling", KX_GameObject, pyattr_get_worldScaling, pyattr_set_localScaling),
KX_PYATTRIBUTE_RW_FUNCTION("timeOffset",KX_GameObject, pyattr_get_timeOffset,pyattr_set_timeOffset),
KX_PYATTRIBUTE_RW_FUNCTION("state", KX_GameObject, pyattr_get_state, pyattr_set_state),
KX_PYATTRIBUTE_RO_FUNCTION("meshes", KX_GameObject, pyattr_get_meshes),
KX_PYATTRIBUTE_RW_FUNCTION("localOrientation",KX_GameObject,pyattr_get_localOrientation,pyattr_set_localOrientation),
KX_PYATTRIBUTE_RW_FUNCTION("worldOrientation",KX_GameObject,pyattr_get_worldOrientation,pyattr_set_worldOrientation),
KX_PYATTRIBUTE_RW_FUNCTION("localPosition", KX_GameObject, pyattr_get_localPosition, pyattr_set_localPosition),
KX_PYATTRIBUTE_RW_FUNCTION("worldPosition", KX_GameObject, pyattr_get_worldPosition, pyattr_set_worldPosition),
KX_PYATTRIBUTE_RW_FUNCTION("localScale", KX_GameObject, pyattr_get_localScaling, pyattr_set_localScaling),
KX_PYATTRIBUTE_RO_FUNCTION("worldScale", KX_GameObject, pyattr_get_worldScaling),
KX_PYATTRIBUTE_RO_FUNCTION("children", KX_GameObject, pyattr_get_children),
KX_PYATTRIBUTE_RO_FUNCTION("childrenRecursive", KX_GameObject, pyattr_get_children_recursive),
KX_PYATTRIBUTE_RO_FUNCTION("attrDict", KX_GameObject, pyattr_get_attrDict),
/* Experemental, dont rely on these yet */
KX_PYATTRIBUTE_RO_FUNCTION("sensors", KX_GameObject, pyattr_get_sensors),
KX_PYATTRIBUTE_RO_FUNCTION("controllers", KX_GameObject, pyattr_get_controllers),
KX_PYATTRIBUTE_RO_FUNCTION("actuators", KX_GameObject, pyattr_get_actuators),
{NULL} //Sentinel
};
/*
bool KX_GameObject::ConvertPythonVectorArgs(PyObject* args,
MT_Vector3& pos,
MT_Vector3& pos2)
{
PyObject* pylist;
PyObject* pylist2;
bool error = (PyArg_ParseTuple(args,"OO",&pylist,&pylist2)) != 0;
pos = ConvertPythonPylist(pylist);
pos2 = ConvertPythonPylist(pylist2);
return error;
}
*/
PyObject* KX_GameObject::PyReplaceMesh(PyObject* args)
{
KX_Scene *scene = KX_GetActiveScene();
PyObject *value;
int use_gfx= 1, use_phys= 0;
RAS_MeshObject *new_mesh;
if (!PyArg_ParseTuple(args,"O|ii:replaceMesh", &value, &use_gfx, &use_phys))
return NULL;
if (!ConvertPythonToMesh(value, &new_mesh, false, "gameOb.replaceMesh(value): KX_GameObject"))
return NULL;
scene->ReplaceMesh(this, new_mesh, (bool)use_gfx, (bool)use_phys);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyEndObject()
{
KX_Scene *scene = KX_GetActiveScene();
scene->DelayedRemoveObject(this);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyReinstancePhysicsMesh(PyObject* args)
{
KX_GameObject *gameobj= NULL;
RAS_MeshObject *mesh= NULL;
PyObject *gameobj_py= NULL;
PyObject *mesh_py= NULL;
if ( !PyArg_ParseTuple(args,"|OO:reinstancePhysicsMesh",&gameobj_py, &mesh_py) ||
(gameobj_py && !ConvertPythonToGameObject(gameobj_py, &gameobj, true, "gameOb.reinstancePhysicsMesh(obj, mesh): KX_GameObject")) ||
(mesh_py && !ConvertPythonToMesh(mesh_py, &mesh, true, "gameOb.reinstancePhysicsMesh(obj, mesh): KX_GameObject"))
) {
return NULL;
}
/* gameobj and mesh can be NULL */
if(KX_ReInstanceBulletShapeFromMesh(this, gameobj, mesh))
Py_RETURN_TRUE;
Py_RETURN_FALSE;
}
static PyObject *Map_GetItem(PyObject *self_v, PyObject *item)
{
KX_GameObject* self= static_cast<KX_GameObject*>BGE_PROXY_REF(self_v);
const char *attr_str= _PyUnicode_AsString(item);
CValue* resultattr;
PyObject* pyconvert;
if (self==NULL) {
PyErr_SetString(PyExc_SystemError, "val = gameOb[key]: KX_GameObject, "BGE_PROXY_ERROR_MSG);
return NULL;
}
/* first see if the attributes a string and try get the cvalue attribute */
if(attr_str && (resultattr=self->GetProperty(attr_str))) {
pyconvert = resultattr->ConvertValueToPython();
return pyconvert ? pyconvert:resultattr->GetProxy();
}
/* no CValue attribute, try get the python only m_attr_dict attribute */
else if (self->m_attr_dict && (pyconvert=PyDict_GetItem(self->m_attr_dict, item))) {
if (attr_str)
PyErr_Clear();
Py_INCREF(pyconvert);
return pyconvert;
}
else {
if(attr_str) PyErr_Format(PyExc_KeyError, "value = gameOb[key]: KX_GameObject, key \"%s\" does not exist", attr_str);
else PyErr_SetString(PyExc_KeyError, "value = gameOb[key]: KX_GameObject, key does not exist");
return NULL;
}
}
static int Map_SetItem(PyObject *self_v, PyObject *key, PyObject *val)
{
KX_GameObject* self= static_cast<KX_GameObject*>BGE_PROXY_REF(self_v);
const char *attr_str= _PyUnicode_AsString(key);
if(attr_str==NULL)
PyErr_Clear();
if (self==NULL) {
PyErr_SetString(PyExc_SystemError, "gameOb[key] = value: KX_GameObject, "BGE_PROXY_ERROR_MSG);
return -1;
}
if (val==NULL) { /* del ob["key"] */
int del= 0;
/* try remove both just incase */
if(attr_str)
del |= (self->RemoveProperty(attr_str)==true) ? 1:0;
if(self->m_attr_dict)
del |= (PyDict_DelItem(self->m_attr_dict, key)==0) ? 1:0;
if (del==0) {
if(attr_str) PyErr_Format(PyExc_KeyError, "gameOb[key] = value: KX_GameObject, key \"%s\" could not be set", attr_str);
else PyErr_SetString(PyExc_KeyError, "del gameOb[key]: KX_GameObject, key could not be deleted");
return -1;
}
else if (self->m_attr_dict) {
PyErr_Clear(); /* PyDict_DelItem sets an error when it fails */
}
}
else { /* ob["key"] = value */
int set= 0;
/* as CValue */
if(attr_str && PyObject_TypeCheck(val, &PyObjectPlus::Type)==0) /* dont allow GameObjects for eg to be assigned to CValue props */
{
CValue* vallie = self->ConvertPythonToValue(val, ""); /* error unused */
if(vallie)
{
CValue* oldprop = self->GetProperty(attr_str);
if (oldprop)
oldprop->SetValue(vallie);
else
self->SetProperty(attr_str, vallie);
vallie->Release();
set= 1;
/* try remove dict value to avoid double ups */
if (self->m_attr_dict){
if (PyDict_DelItem(self->m_attr_dict, key) != 0)
PyErr_Clear();
}
}
else {
PyErr_Clear();
}
}
if(set==0)
{
if (self->m_attr_dict==NULL) /* lazy init */
self->m_attr_dict= PyDict_New();
if(PyDict_SetItem(self->m_attr_dict, key, val)==0)
{
if(attr_str)
self->RemoveProperty(attr_str); /* overwrite the CValue if it exists */
set= 1;
}
else {
if(attr_str) PyErr_Format(PyExc_KeyError, "gameOb[key] = value: KX_GameObject, key \"%s\" not be added to internal dictionary", attr_str);
else PyErr_SetString(PyExc_KeyError, "gameOb[key] = value: KX_GameObject, key not be added to internal dictionary");
}
}
if(set==0)
return -1; /* pythons error value */
}
return 0; /* success */
}
static int Seq_Contains(PyObject *self_v, PyObject *value)
{
KX_GameObject* self= static_cast<KX_GameObject*>BGE_PROXY_REF(self_v);
if (self==NULL) {
PyErr_SetString(PyExc_SystemError, "val in gameOb: KX_GameObject, "BGE_PROXY_ERROR_MSG);
return -1;
}
if(PyUnicode_Check(value) && self->GetProperty(_PyUnicode_AsString(value)))
return 1;
if (self->m_attr_dict && PyDict_GetItem(self->m_attr_dict, value))
return 1;
return 0;
}
PyMappingMethods KX_GameObject::Mapping = {
(lenfunc)NULL , /*inquiry mp_length */
(binaryfunc)Map_GetItem, /*binaryfunc mp_subscript */
(objobjargproc)Map_SetItem, /*objobjargproc mp_ass_subscript */
};
PySequenceMethods KX_GameObject::Sequence = {
NULL, /* Cant set the len otherwise it can evaluate as false */
NULL, /* sq_concat */
NULL, /* sq_repeat */
NULL, /* sq_item */
NULL, /* sq_slice */
NULL, /* sq_ass_item */
NULL, /* sq_ass_slice */
(objobjproc)Seq_Contains, /* sq_contains */
};
PyTypeObject KX_GameObject::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"KX_GameObject",
sizeof(PyObjectPlus_Proxy),
0,
py_base_dealloc,
0,
0,
0,
0,
py_base_repr,
0,
&Sequence,
&Mapping,
0,0,0,
NULL,
NULL,
0,
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
0,0,0,0,0,0,0,
Methods,
0,
0,
&SCA_IObject::Type,
0,0,0,0,0,0,
py_base_new
};
PyObject* KX_GameObject::pyattr_get_name(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
return PyUnicode_FromString(self->GetName().ReadPtr());
}
PyObject* KX_GameObject::pyattr_get_parent(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
KX_GameObject* parent = self->GetParent();
if (parent) {
parent->Release(); /* self->GetParent() AddRef's */
return parent->GetProxy();
}
Py_RETURN_NONE;
}
PyObject* KX_GameObject::pyattr_get_mass(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
KX_IPhysicsController *spc = self->GetPhysicsController();
return PyFloat_FromDouble(spc ? spc->GetMass() : 0.0f);
}
int KX_GameObject::pyattr_set_mass(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
KX_IPhysicsController *spc = self->GetPhysicsController();
MT_Scalar val = PyFloat_AsDouble(value);
if (val < 0.0f) { /* also accounts for non float */
PyErr_SetString(PyExc_AttributeError, "gameOb.mass = float: KX_GameObject, expected a float zero or above");
return PY_SET_ATTR_FAIL;
}
if (spc)
spc->SetMass(val);
return PY_SET_ATTR_SUCCESS;
}
PyObject* KX_GameObject::pyattr_get_lin_vel_min(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
KX_IPhysicsController *spc = self->GetPhysicsController();
return PyFloat_FromDouble(spc ? spc->GetLinVelocityMax() : 0.0f);
}
int KX_GameObject::pyattr_set_lin_vel_min(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
KX_IPhysicsController *spc = self->GetPhysicsController();
MT_Scalar val = PyFloat_AsDouble(value);
if (val < 0.0f) { /* also accounts for non float */
PyErr_SetString(PyExc_AttributeError, "gameOb.linVelocityMin = float: KX_GameObject, expected a float zero or above");
return PY_SET_ATTR_FAIL;
}
if (spc)
spc->SetLinVelocityMin(val);
return PY_SET_ATTR_SUCCESS;
}
PyObject* KX_GameObject::pyattr_get_lin_vel_max(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
KX_IPhysicsController *spc = self->GetPhysicsController();
return PyFloat_FromDouble(spc ? spc->GetLinVelocityMax() : 0.0f);
}
int KX_GameObject::pyattr_set_lin_vel_max(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
KX_IPhysicsController *spc = self->GetPhysicsController();
MT_Scalar val = PyFloat_AsDouble(value);
if (val < 0.0f) { /* also accounts for non float */
PyErr_SetString(PyExc_AttributeError, "gameOb.linVelocityMax = float: KX_GameObject, expected a float zero or above");
return PY_SET_ATTR_FAIL;
}
if (spc)
spc->SetLinVelocityMax(val);
return PY_SET_ATTR_SUCCESS;
}
PyObject* KX_GameObject::pyattr_get_visible(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
return PyBool_FromLong(self->GetVisible());
}
int KX_GameObject::pyattr_set_visible(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
int param = PyObject_IsTrue( value );
if (param == -1) {
PyErr_SetString(PyExc_AttributeError, "gameOb.visible = bool: KX_GameObject, expected True or False");
return PY_SET_ATTR_FAIL;
}
self->SetVisible(param, false);
self->UpdateBuckets(false);
return PY_SET_ATTR_SUCCESS;
}
PyObject* KX_GameObject::pyattr_get_worldPosition(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
#ifdef USE_MATHUTILS
return newVectorObject_cb((PyObject *)self_v, 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_POS_GLOBAL);
#else
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
return PyObjectFrom(self->NodeGetWorldPosition());
#endif
}
int KX_GameObject::pyattr_set_worldPosition(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
MT_Point3 pos;
if (!PyVecTo(value, pos))
return PY_SET_ATTR_FAIL;
self->NodeSetWorldPosition(pos);
self->NodeUpdateGS(0.f);
return PY_SET_ATTR_SUCCESS;
}
PyObject* KX_GameObject::pyattr_get_localPosition(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
#ifdef USE_MATHUTILS
return newVectorObject_cb((PyObject *)self_v, 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_POS_LOCAL);
#else
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
return PyObjectFrom(self->NodeGetLocalPosition());
#endif
}
int KX_GameObject::pyattr_set_localPosition(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
MT_Point3 pos;
if (!PyVecTo(value, pos))
return PY_SET_ATTR_FAIL;
self->NodeSetLocalPosition(pos);
self->NodeUpdateGS(0.f);
return PY_SET_ATTR_SUCCESS;
}
PyObject* KX_GameObject::pyattr_get_localInertia(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
#ifdef USE_MATHUTILS
return newVectorObject_cb((PyObject *)self_v, 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_INERTIA_LOCAL);
#else
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
if (self->GetPhysicsController())
return PyObjectFrom(self->GetPhysicsController()->GetLocalInertia());
return Py_BuildValue("fff", 0.0f, 0.0f, 0.0f);
#endif
}
PyObject* KX_GameObject::pyattr_get_worldOrientation(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
#ifdef USE_MATHUTILS
return newMatrixObject_cb((PyObject *)self_v, 3, 3, mathutils_kxgameob_matrix_cb_index, MATHUTILS_MAT_CB_ORI_GLOBAL);
#else
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
return PyObjectFrom(self->NodeGetWorldOrientation());
#endif
}
int KX_GameObject::pyattr_set_worldOrientation(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
/* if value is not a sequence PyOrientationTo makes an error */
MT_Matrix3x3 rot;
if (!PyOrientationTo(value, rot, "gameOb.worldOrientation = sequence: KX_GameObject, "))
return PY_SET_ATTR_FAIL;
self->NodeSetGlobalOrientation(rot);
self->NodeUpdateGS(0.f);
return PY_SET_ATTR_SUCCESS;
}
PyObject* KX_GameObject::pyattr_get_localOrientation(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
#ifdef USE_MATHUTILS
return newMatrixObject_cb((PyObject *)self_v, 3, 3, mathutils_kxgameob_matrix_cb_index, MATHUTILS_MAT_CB_ORI_LOCAL);
#else
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
return PyObjectFrom(self->NodeGetLocalOrientation());
#endif
}
int KX_GameObject::pyattr_set_localOrientation(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
/* if value is not a sequence PyOrientationTo makes an error */
MT_Matrix3x3 rot;
if (!PyOrientationTo(value, rot, "gameOb.localOrientation = sequence: KX_GameObject, "))
return PY_SET_ATTR_FAIL;
self->NodeSetLocalOrientation(rot);
self->NodeUpdateGS(0.f);
return PY_SET_ATTR_SUCCESS;
}
PyObject* KX_GameObject::pyattr_get_worldScaling(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
#ifdef USE_MATHUTILS
return newVectorObject_cb((PyObject *)self_v, 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_SCALE_GLOBAL);
#else
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
return PyObjectFrom(self->NodeGetWorldScaling());
#endif
}
PyObject* KX_GameObject::pyattr_get_localScaling(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
#ifdef USE_MATHUTILS
return newVectorObject_cb((PyObject *)self_v, 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_SCALE_LOCAL);
#else
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
return PyObjectFrom(self->NodeGetLocalScaling());
#endif
}
int KX_GameObject::pyattr_set_localScaling(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
MT_Vector3 scale;
if (!PyVecTo(value, scale))
return PY_SET_ATTR_FAIL;
self->NodeSetLocalScale(scale);
self->NodeUpdateGS(0.f);
return PY_SET_ATTR_SUCCESS;
}
PyObject* KX_GameObject::pyattr_get_timeOffset(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
SG_Node* sg_parent;
if (self->GetSGNode() && (sg_parent = self->GetSGNode()->GetSGParent()) != NULL && sg_parent->IsSlowParent()) {
return PyFloat_FromDouble(static_cast<KX_SlowParentRelation *>(sg_parent->GetParentRelation())->GetTimeOffset());
} else {
return PyFloat_FromDouble(0.0);
}
}
int KX_GameObject::pyattr_set_timeOffset(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
if (self->GetSGNode()) {
MT_Scalar val = PyFloat_AsDouble(value);
SG_Node* sg_parent= self->GetSGNode()->GetSGParent();
if (val < 0.0f) { /* also accounts for non float */
PyErr_SetString(PyExc_AttributeError, "gameOb.timeOffset = float: KX_GameObject, expected a float zero or above");
return PY_SET_ATTR_FAIL;
}
if (sg_parent && sg_parent->IsSlowParent())
static_cast<KX_SlowParentRelation *>(sg_parent->GetParentRelation())->SetTimeOffset(val);
}
return PY_SET_ATTR_SUCCESS;
}
PyObject* KX_GameObject::pyattr_get_state(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
int state = 0;
state |= self->GetState();
return PyLong_FromSsize_t(state);
}
int KX_GameObject::pyattr_set_state(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
int state_i = PyLong_AsSsize_t(value);
unsigned int state = 0;
if (state_i == -1 && PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError, "gameOb.state = int: KX_GameObject, expected an int bit field");
return PY_SET_ATTR_FAIL;
}
state |= state_i;
if ((state & ((1<<30)-1)) == 0) {
PyErr_SetString(PyExc_AttributeError, "gameOb.state = int: KX_GameObject, state bitfield was not between 0 and 30 (1<<0 and 1<<29)");
return PY_SET_ATTR_FAIL;
}
self->SetState(state);
return PY_SET_ATTR_SUCCESS;
}
PyObject* KX_GameObject::pyattr_get_meshes(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
PyObject *meshes= PyList_New(self->m_meshes.size());
int i;
for(i=0; i < (int)self->m_meshes.size(); i++)
{
KX_MeshProxy* meshproxy = new KX_MeshProxy(self->m_meshes[i]);
PyList_SET_ITEM(meshes, i, meshproxy->NewProxy(true));
}
return meshes;
}
/* experemental! */
PyObject* KX_GameObject::pyattr_get_sensors(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
return KX_PythonSeq_CreatePyObject((static_cast<KX_GameObject*>(self_v))->m_proxy, KX_PYGENSEQ_OB_TYPE_SENSORS);
}
PyObject* KX_GameObject::pyattr_get_controllers(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
return KX_PythonSeq_CreatePyObject((static_cast<KX_GameObject*>(self_v))->m_proxy, KX_PYGENSEQ_OB_TYPE_CONTROLLERS);
}
PyObject* KX_GameObject::pyattr_get_actuators(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
return KX_PythonSeq_CreatePyObject((static_cast<KX_GameObject*>(self_v))->m_proxy, KX_PYGENSEQ_OB_TYPE_ACTUATORS);
}
PyObject* KX_GameObject::pyattr_get_children(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
return self->GetChildren()->NewProxy(true);
}
PyObject* KX_GameObject::pyattr_get_children_recursive(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
return self->GetChildrenRecursive()->NewProxy(true);
}
PyObject* KX_GameObject::pyattr_get_attrDict(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_GameObject* self= static_cast<KX_GameObject*>(self_v);
if(self->m_attr_dict==NULL)
self->m_attr_dict= PyDict_New();
Py_INCREF(self->m_attr_dict);
return self->m_attr_dict;
}
PyObject* KX_GameObject::PyApplyForce(PyObject* args)
{
int local = 0;
PyObject* pyvect;
if (PyArg_ParseTuple(args, "O|i:applyForce", &pyvect, &local)) {
MT_Vector3 force;
if (PyVecTo(pyvect, force)) {
ApplyForce(force, (local!=0));
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PyApplyTorque(PyObject* args)
{
int local = 0;
PyObject* pyvect;
if (PyArg_ParseTuple(args, "O|i:applyTorque", &pyvect, &local)) {
MT_Vector3 torque;
if (PyVecTo(pyvect, torque)) {
ApplyTorque(torque, (local!=0));
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PyApplyRotation(PyObject* args)
{
int local = 0;
PyObject* pyvect;
if (PyArg_ParseTuple(args, "O|i:applyRotation", &pyvect, &local)) {
MT_Vector3 rotation;
if (PyVecTo(pyvect, rotation)) {
ApplyRotation(rotation, (local!=0));
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PyApplyMovement(PyObject* args)
{
int local = 0;
PyObject* pyvect;
if (PyArg_ParseTuple(args, "O|i:applyMovement", &pyvect, &local)) {
MT_Vector3 movement;
if (PyVecTo(pyvect, movement)) {
ApplyMovement(movement, (local!=0));
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PyGetLinearVelocity(PyObject* args)
{
// only can get the velocity if we have a physics object connected to us...
int local = 0;
if (PyArg_ParseTuple(args,"|i:getLinearVelocity",&local))
{
return PyObjectFrom(GetLinearVelocity((local!=0)));
}
else
{
return NULL;
}
}
PyObject* KX_GameObject::PySetLinearVelocity(PyObject* args)
{
int local = 0;
PyObject* pyvect;
if (PyArg_ParseTuple(args,"O|i:setLinearVelocity",&pyvect,&local)) {
MT_Vector3 velocity;
if (PyVecTo(pyvect, velocity)) {
setLinearVelocity(velocity, (local!=0));
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PyGetAngularVelocity(PyObject* args)
{
// only can get the velocity if we have a physics object connected to us...
int local = 0;
if (PyArg_ParseTuple(args,"|i:getAngularVelocity",&local))
{
return PyObjectFrom(GetAngularVelocity((local!=0)));
}
else
{
return NULL;
}
}
PyObject* KX_GameObject::PySetAngularVelocity(PyObject* args)
{
int local = 0;
PyObject* pyvect;
if (PyArg_ParseTuple(args,"O|i:setAngularVelocity",&pyvect,&local)) {
MT_Vector3 velocity;
if (PyVecTo(pyvect, velocity)) {
setAngularVelocity(velocity, (local!=0));
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PySetVisible(PyObject* args)
{
int visible, recursive = 0;
if (!PyArg_ParseTuple(args,"i|i:setVisible",&visible, &recursive))
return NULL;
SetVisible(visible ? true:false, recursive ? true:false);
UpdateBuckets(recursive ? true:false);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PySetOcclusion(PyObject* args)
{
int occlusion, recursive = 0;
if (!PyArg_ParseTuple(args,"i|i:setOcclusion",&occlusion, &recursive))
return NULL;
SetOccluder(occlusion ? true:false, recursive ? true:false);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyGetVelocity(PyObject* args)
{
// only can get the velocity if we have a physics object connected to us...
MT_Point3 point(0.0,0.0,0.0);
PyObject* pypos = NULL;
if (!PyArg_ParseTuple(args, "|O:getVelocity", &pypos) || (pypos && !PyVecTo(pypos, point)))
return NULL;
if (m_pPhysicsController1)
{
return PyObjectFrom(m_pPhysicsController1->GetVelocity(point));
}
else {
return PyObjectFrom(MT_Vector3(0.0,0.0,0.0));
}
}
PyObject* KX_GameObject::PyGetReactionForce()
{
// only can get the velocity if we have a physics object connected to us...
// XXX - Currently not working with bullet intergration, see KX_BulletPhysicsController.cpp's getReactionForce
/*
if (GetPhysicsController())
return PyObjectFrom(GetPhysicsController()->getReactionForce());
return PyObjectFrom(dummy_point);
*/
return Py_BuildValue("fff", 0.0f, 0.0f, 0.0f);
}
PyObject* KX_GameObject::PyEnableRigidBody()
{
if(GetPhysicsController())
GetPhysicsController()->setRigidBody(true);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyDisableRigidBody()
{
if(GetPhysicsController())
GetPhysicsController()->setRigidBody(false);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PySetParent(PyObject* args)
{
KX_Scene *scene = KX_GetActiveScene();
PyObject* pyobj;
KX_GameObject *obj;
int addToCompound=1, ghost=1;
if (!PyArg_ParseTuple(args,"O|ii:setParent", &pyobj, &addToCompound, &ghost)) {
return NULL; // Python sets a simple error
}
if (!ConvertPythonToGameObject(pyobj, &obj, true, "gameOb.setParent(obj): KX_GameObject"))
return NULL;
if (obj)
this->SetParent(scene, obj, addToCompound, ghost);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyRemoveParent()
{
KX_Scene *scene = KX_GetActiveScene();
this->RemoveParent(scene);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PySetCollisionMargin(PyObject* value)
{
float collisionMargin = PyFloat_AsDouble(value);
if (collisionMargin==-1 && PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError, "expected a float");
return NULL;
}
if (m_pPhysicsController1)
{
m_pPhysicsController1->setMargin(collisionMargin);
Py_RETURN_NONE;
}
PyErr_SetString(PyExc_RuntimeError, "This object has no physics controller");
return NULL;
}
PyObject* KX_GameObject::PyApplyImpulse(PyObject* args)
{
PyObject* pyattach;
PyObject* pyimpulse;
if (!m_pPhysicsController1) {
PyErr_SetString(PyExc_RuntimeError, "This object has no physics controller");
return NULL;
}
if (PyArg_ParseTuple(args, "OO:applyImpulse", &pyattach, &pyimpulse))
{
MT_Point3 attach;
MT_Vector3 impulse;
if (PyVecTo(pyattach, attach) && PyVecTo(pyimpulse, impulse))
{
m_pPhysicsController1->applyImpulse(attach, impulse);
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PySuspendDynamics()
{
SuspendDynamics();
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyRestoreDynamics()
{
RestoreDynamics();
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyAlignAxisToVect(PyObject* args)
{
PyObject* pyvect;
int axis = 2; //z axis is the default
float fac = 1.0;
if (PyArg_ParseTuple(args,"O|if:alignAxisToVect",&pyvect,&axis, &fac))
{
MT_Vector3 vect;
if (PyVecTo(pyvect, vect))
{
if (fac<=0.0) Py_RETURN_NONE; // Nothing to do.
if (fac> 1.0) fac= 1.0;
AlignAxisToVect(vect,axis,fac);
NodeUpdateGS(0.f);
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PyGetAxisVect(PyObject* value)
{
MT_Vector3 vect;
if (PyVecTo(value, vect))
{
return PyObjectFrom(NodeGetWorldOrientation() * vect);
}
return NULL;
}
PyObject* KX_GameObject::PyGetPhysicsId()
{
KX_IPhysicsController* ctrl = GetPhysicsController();
uint_ptr physid=0;
if (ctrl)
{
physid= (uint_ptr)ctrl->GetUserData();
}
return PyLong_FromSsize_t((long)physid);
}
PyObject* KX_GameObject::PyGetPropertyNames()
{
PyObject *list= ConvertKeysToPython();
if(m_attr_dict) {
PyObject *key, *value;
Py_ssize_t pos = 0;
while (PyDict_Next(m_attr_dict, &pos, &key, &value)) {
PyList_Append(list, key);
}
}
return list;
}
KX_PYMETHODDEF_DOC_O(KX_GameObject, getDistanceTo,
"getDistanceTo(other): get distance to another point/KX_GameObject")
{
MT_Point3 b;
if (PyVecTo(value, b))
{
return PyFloat_FromDouble(NodeGetWorldPosition().distance(b));
}
PyErr_Clear();
KX_GameObject *other;
if (ConvertPythonToGameObject(value, &other, false, "gameOb.getDistanceTo(value): KX_GameObject"))
{
return PyFloat_FromDouble(NodeGetWorldPosition().distance(other->NodeGetWorldPosition()));
}
return NULL;
}
KX_PYMETHODDEF_DOC_O(KX_GameObject, getVectTo,
"getVectTo(other): get vector and the distance to another point/KX_GameObject\n"
"Returns a 3-tuple with (distance,worldVector,localVector)\n")
{
MT_Point3 toPoint, fromPoint;
MT_Vector3 toDir, locToDir;
MT_Scalar distance;
PyObject *returnValue;
if (!PyVecTo(value, toPoint))
{
PyErr_Clear();
KX_GameObject *other;
if (ConvertPythonToGameObject(value, &other, false, "")) /* error will be overwritten */
{
toPoint = other->NodeGetWorldPosition();
} else
{
PyErr_SetString(PyExc_TypeError, "gameOb.getVectTo(other): KX_GameObject, expected a 3D Vector or KX_GameObject type");
return NULL;
}
}
fromPoint = NodeGetWorldPosition();
toDir = toPoint-fromPoint;
distance = toDir.length();
if (MT_fuzzyZero(distance))
{
//cout << "getVectTo() Error: Null vector!\n";
locToDir = toDir = MT_Vector3(0.0,0.0,0.0);
distance = 0.0;
} else {
toDir.normalize();
locToDir = toDir * NodeGetWorldOrientation();
}
returnValue = PyTuple_New(3);
if (returnValue) { // very unlikely to fail, python sets a memory error here.
PyTuple_SET_ITEM(returnValue, 0, PyFloat_FromDouble(distance));
PyTuple_SET_ITEM(returnValue, 1, PyObjectFrom(toDir));
PyTuple_SET_ITEM(returnValue, 2, PyObjectFrom(locToDir));
}
return returnValue;
}
bool KX_GameObject::RayHit(KX_ClientObjectInfo* client, KX_RayCast* result, void * const data)
{
KX_GameObject* hitKXObj = client->m_gameobject;
// if X-ray option is selected, the unwnted objects were not tested, so get here only with true hit
// if not, all objects were tested and the front one may not be the correct one.
if (m_xray || m_testPropName.Length() == 0 || hitKXObj->GetProperty(m_testPropName) != NULL)
{
m_pHitObject = hitKXObj;
return true;
}
// return true to stop RayCast::RayTest from looping, the above test was decisive
// We would want to loop only if we want to get more than one hit point
return true;
}
/* this function is used to pre-filter the object before casting the ray on them.
This is useful for "X-Ray" option when we want to see "through" unwanted object.
*/
bool KX_GameObject::NeedRayCast(KX_ClientObjectInfo* client)
{
KX_GameObject* hitKXObj = client->m_gameobject;
if (client->m_type > KX_ClientObjectInfo::ACTOR)
{
// Unknown type of object, skip it.
// Should not occur as the sensor objects are filtered in RayTest()
printf("Invalid client type %d found in ray casting\n", client->m_type);
return false;
}
// if X-Ray option is selected, skip object that don't match the criteria as we see through them
// if not, test all objects because we don't know yet which one will be on front
if (!m_xray || m_testPropName.Length() == 0 || hitKXObj->GetProperty(m_testPropName) != NULL)
{
return true;
}
// skip the object
return false;
}
KX_PYMETHODDEF_DOC(KX_GameObject, rayCastTo,
"rayCastTo(other,dist,prop): look towards another point/KX_GameObject and return first object hit within dist that matches prop\n"
" prop = property name that object must have; can be omitted => detect any object\n"
" dist = max distance to look (can be negative => look behind); 0 or omitted => detect up to other\n"
" other = 3-tuple or object reference")
{
MT_Point3 toPoint;
PyObject* pyarg;
float dist = 0.0f;
char *propName = NULL;
if (!PyArg_ParseTuple(args,"O|fs:rayCastTo", &pyarg, &dist, &propName)) {
return NULL; // python sets simple error
}
if (!PyVecTo(pyarg, toPoint))
{
KX_GameObject *other;
PyErr_Clear();
if (ConvertPythonToGameObject(pyarg, &other, false, "")) /* error will be overwritten */
{
toPoint = other->NodeGetWorldPosition();
} else
{
PyErr_SetString(PyExc_TypeError, "gameOb.rayCastTo(other,dist,prop): KX_GameObject, the first argument to rayCastTo must be a vector or a KX_GameObject");
return NULL;
}
}
MT_Point3 fromPoint = NodeGetWorldPosition();
if (dist != 0.0f)
{
MT_Vector3 toDir = toPoint-fromPoint;
toDir.normalize();
toPoint = fromPoint + (dist) * toDir;
}
PHY_IPhysicsEnvironment* pe = KX_GetActiveScene()->GetPhysicsEnvironment();
KX_IPhysicsController *spc = GetPhysicsController();
KX_GameObject *parent = GetParent();
if (!spc && parent)
spc = parent->GetPhysicsController();
if (parent)
parent->Release();
m_pHitObject = NULL;
if (propName)
m_testPropName = propName;
else
m_testPropName.SetLength(0);
KX_RayCast::Callback<KX_GameObject> callback(this,spc);
KX_RayCast::RayTest(pe, fromPoint, toPoint, callback);
if (m_pHitObject)
return m_pHitObject->GetProxy();
Py_RETURN_NONE;
}
/* faster then Py_BuildValue since some scripts call raycast a lot */
static PyObject *none_tuple_3()
{
PyObject *ret= PyTuple_New(3);
PyTuple_SET_ITEM(ret, 0, Py_None);
PyTuple_SET_ITEM(ret, 1, Py_None);
PyTuple_SET_ITEM(ret, 2, Py_None);
Py_INCREF(Py_None);
Py_INCREF(Py_None);
Py_INCREF(Py_None);
return ret;
}
static PyObject *none_tuple_4()
{
PyObject *ret= PyTuple_New(4);
PyTuple_SET_ITEM(ret, 0, Py_None);
PyTuple_SET_ITEM(ret, 1, Py_None);
PyTuple_SET_ITEM(ret, 2, Py_None);
PyTuple_SET_ITEM(ret, 3, Py_None);
Py_INCREF(Py_None);
Py_INCREF(Py_None);
Py_INCREF(Py_None);
Py_INCREF(Py_None);
return ret;
}
KX_PYMETHODDEF_DOC(KX_GameObject, rayCast,
"rayCast(to,from,dist,prop,face,xray,poly): cast a ray and return 3-tuple (object,hit,normal) or 4-tuple (object,hit,normal,polygon) of contact point with object within dist that matches prop.\n"
" If no hit, return (None,None,None) or (None,None,None,None).\n"
" to = 3-tuple or object reference for destination of ray (if object, use center of object)\n"
" from = 3-tuple or object reference for origin of ray (if object, use center of object)\n"
" Can be None or omitted => start from self object center\n"
" dist = max distance to look (can be negative => look behind); 0 or omitted => detect up to to\n"
" prop = property name that object must have; can be omitted => detect any object\n"
" face = normal option: 1=>return face normal; 0 or omitted => normal is oriented towards origin\n"
" xray = X-ray option: 1=>skip objects that don't match prop; 0 or omitted => stop on first object\n"
" poly = polygon option: 1=>return value is a 4-tuple and the 4th element is a KX_PolyProxy object\n"
" which can be None if hit object has no mesh or if there is no hit\n"
" If 0 or omitted, return value is a 3-tuple\n"
"Note: The object on which you call this method matters: the ray will ignore it.\n"
" prop and xray option interact as follow:\n"
" prop off, xray off: return closest hit or no hit if there is no object on the full extend of the ray\n"
" prop off, xray on : idem\n"
" prop on, xray off: return closest hit if it matches prop, no hit otherwise\n"
" prop on, xray on : return closest hit matching prop or no hit if there is no object matching prop on the full extend of the ray\n")
{
MT_Point3 toPoint;
MT_Point3 fromPoint;
PyObject* pyto;
PyObject* pyfrom = NULL;
float dist = 0.0f;
char *propName = NULL;
KX_GameObject *other;
int face=0, xray=0, poly=0;
if (!PyArg_ParseTuple(args,"O|Ofsiii:rayCast", &pyto, &pyfrom, &dist, &propName, &face, &xray, &poly)) {
return NULL; // Python sets a simple error
}
if (!PyVecTo(pyto, toPoint))
{
PyErr_Clear();
if (ConvertPythonToGameObject(pyto, &other, false, "")) /* error will be overwritten */
{
toPoint = other->NodeGetWorldPosition();
} else
{
PyErr_SetString(PyExc_TypeError, "the first argument to rayCast must be a vector or a KX_GameObject");
return NULL;
}
}
if (!pyfrom || pyfrom == Py_None)
{
fromPoint = NodeGetWorldPosition();
}
else if (!PyVecTo(pyfrom, fromPoint))
{
PyErr_Clear();
if (ConvertPythonToGameObject(pyfrom, &other, false, "")) /* error will be overwritten */
{
fromPoint = other->NodeGetWorldPosition();
} else
{
PyErr_SetString(PyExc_TypeError, "gameOb.rayCast(to,from,dist,prop,face,xray,poly): KX_GameObject, the second optional argument to rayCast must be a vector or a KX_GameObject");
return NULL;
}
}
if (dist != 0.0f) {
MT_Vector3 toDir = toPoint-fromPoint;
if (MT_fuzzyZero(toDir.length2())) {
//return Py_BuildValue("OOO", Py_None, Py_None, Py_None);
return none_tuple_3();
}
toDir.normalize();
toPoint = fromPoint + (dist) * toDir;
} else if (MT_fuzzyZero((toPoint-fromPoint).length2())) {
//return Py_BuildValue("OOO", Py_None, Py_None, Py_None);
return none_tuple_3();
}
PHY_IPhysicsEnvironment* pe = KX_GetActiveScene()->GetPhysicsEnvironment();
KX_IPhysicsController *spc = GetPhysicsController();
KX_GameObject *parent = GetParent();
if (!spc && parent)
spc = parent->GetPhysicsController();
if (parent)
parent->Release();
m_pHitObject = NULL;
if (propName)
m_testPropName = propName;
else
m_testPropName.SetLength(0);
m_xray = xray;
// to get the hit results
KX_RayCast::Callback<KX_GameObject> callback(this,spc,NULL,face);
KX_RayCast::RayTest(pe, fromPoint, toPoint, callback);
if (m_pHitObject)
{
PyObject* returnValue = (poly) ? PyTuple_New(4) : PyTuple_New(3);
if (returnValue) { // unlikely this would ever fail, if it does python sets an error
PyTuple_SET_ITEM(returnValue, 0, m_pHitObject->GetProxy());
PyTuple_SET_ITEM(returnValue, 1, PyObjectFrom(callback.m_hitPoint));
PyTuple_SET_ITEM(returnValue, 2, PyObjectFrom(callback.m_hitNormal));
if (poly)
{
if (callback.m_hitMesh)
{
// if this field is set, then we can trust that m_hitPolygon is a valid polygon
RAS_Polygon* polygon = callback.m_hitMesh->GetPolygon(callback.m_hitPolygon);
KX_PolyProxy* polyproxy = new KX_PolyProxy(callback.m_hitMesh, polygon);
PyTuple_SET_ITEM(returnValue, 3, polyproxy->NewProxy(true));
}
else
{
Py_INCREF(Py_None);
PyTuple_SET_ITEM(returnValue, 3, Py_None);
}
}
}
return returnValue;
}
// no hit
if (poly)
//return Py_BuildValue("OOOO", Py_None, Py_None, Py_None, Py_None);
return none_tuple_4();
else
//return Py_BuildValue("OOO", Py_None, Py_None, Py_None);
return none_tuple_3();
}
KX_PYMETHODDEF_DOC_VARARGS(KX_GameObject, sendMessage,
"sendMessage(subject, [body, to])\n"
"sends a message in same manner as a message actuator"
"subject = Subject of the message (string)"
"body = Message body (string)"
"to = Name of object to send the message to")
{
KX_Scene *scene = KX_GetActiveScene();
char* subject;
char* body = (char *)"";
char* to = (char *)"";
const STR_String& from = GetName();
if (!PyArg_ParseTuple(args, "s|sss:sendMessage", &subject, &body, &to))
return NULL;
scene->GetNetworkScene()->SendMessage(to, from, subject, body);
Py_RETURN_NONE;
}
/* dict style access */
/* Matches python dict.get(key, [default]) */
PyObject* KX_GameObject::Pyget(PyObject *args)
{
PyObject *key;
PyObject* def = Py_None;
PyObject* ret;
if (!PyArg_ParseTuple(args, "O|O:get", &key, &def))
return NULL;
if(PyUnicode_Check(key)) {
CValue *item = GetProperty(_PyUnicode_AsString(key));
if (item) {
ret = item->ConvertValueToPython();
if(ret)
return ret;
else
return item->GetProxy();
}
}
if (m_attr_dict && (ret=PyDict_GetItem(m_attr_dict, key))) {
Py_INCREF(ret);
return ret;
}
Py_INCREF(def);
return def;
}
/* ---------------------------------------------------------------------
* Some stuff taken from the header
* --------------------------------------------------------------------- */
void KX_GameObject::Relink(GEN_Map<GEN_HashedPtr, void*> *map_parameter)
{
// we will relink the sensors and actuators that use object references
// if the object is part of the replicated hierarchy, use the new
// object reference instead
SCA_SensorList& sensorlist = GetSensors();
SCA_SensorList::iterator sit;
for (sit=sensorlist.begin(); sit != sensorlist.end(); sit++)
{
(*sit)->Relink(map_parameter);
}
SCA_ActuatorList& actuatorlist = GetActuators();
SCA_ActuatorList::iterator ait;
for (ait=actuatorlist.begin(); ait != actuatorlist.end(); ait++)
{
(*ait)->Relink(map_parameter);
}
}
bool ConvertPythonToGameObject(PyObject * value, KX_GameObject **object, bool py_none_ok, const char *error_prefix)
{
if (value==NULL) {
PyErr_Format(PyExc_TypeError, "%s, python pointer NULL, should never happen", error_prefix);
*object = NULL;
return false;
}
if (value==Py_None) {
*object = NULL;
if (py_none_ok) {
return true;
} else {
PyErr_Format(PyExc_TypeError, "%s, expected KX_GameObject or a KX_GameObject name, None is invalid", error_prefix);
return false;
}
}
if (PyUnicode_Check(value)) {
*object = (KX_GameObject*)SCA_ILogicBrick::m_sCurrentLogicManager->GetGameObjectByName(STR_String( _PyUnicode_AsString(value) ));
if (*object) {
return true;
} else {
PyErr_Format(PyExc_ValueError, "%s, requested name \"%s\" did not match any KX_GameObject in this scene", error_prefix, _PyUnicode_AsString(value));
return false;
}
}
if ( PyObject_TypeCheck(value, &KX_GameObject::Type) ||
PyObject_TypeCheck(value, &KX_LightObject::Type) ||
PyObject_TypeCheck(value, &KX_Camera::Type) )
{
*object = static_cast<KX_GameObject*>BGE_PROXY_REF(value);
/* sets the error */
if (*object==NULL) {
PyErr_Format(PyExc_SystemError, "%s, " BGE_PROXY_ERROR_MSG, error_prefix);
return false;
}
return true;
}
*object = NULL;
if (py_none_ok) {
PyErr_Format(PyExc_TypeError, "%s, expect a KX_GameObject, a string or None", error_prefix);
} else {
PyErr_Format(PyExc_TypeError, "%s, expect a KX_GameObject or a string", error_prefix);
}
return false;
}